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A motivating problem
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I Consider a game between Algorithm and Spoiler.

I Spoiler selects a point x ∈ R. Each open unit interval can
have at most w selected points; we call w the width of the
game.

I Algorithm assigns x a color. Colors must be distinct on open
unit intervals.

I Open: How many colors does Algorithm need?

I The greedy algorithm uses at most 2w − 1 colors.
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Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek)

There is a strategy for Spoiler that forces Algorithm to use at
least

⌊
3
2w
⌋

colors.

I Spoiler plays k times at −1, forcing k “old” colors.

I Spoiler plays in [0, 1] so that new colors are left of old colors.

I After at most 2k rounds, Spoiler forces at least k new colors.

I Spoiler plays k times at a point in [−1, 0] that conflicts with
new colors in [0, 1] but is far away from old colors.
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I This forces 3k colors in a game of width 2k.



A generalization to graphs

I For a graph G , the G -coloring game of width w is played in
rounds between Spoiler and Algorithm:

I Spoiler chooses a vertex v ∈ V (G ) and plays a token x at v .
I Algorithm assigns x a color.

I The associated token graph H is obtained from G by replacing
each vertex v with the complete graph on the tokens at v .

I Algorithm must give a proper coloring of H and wants to
minimize the number of colors used.

I Spoiler must ensure that χ(H) ≤ w and wants to force many
colors.

I The value of the game, denoted f (G ;w), is the number of
colors needed by an optimal strategy for Algorithm.

I Let G be the graph on R with uv ∈ E (G) if and only if
|u − v | < 1.

I
⌊
3
2w
⌋
≤ f (G;w) ≤ 2w − 1.
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I Given u ∈ V (G ), we may clone u to produce a new graph G ′

with an additional vertex u′ that is a twin of G .

I Fact: a graph G is P4-free if and only if G is obtainable from
a single vertex by cloning.
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If G ′ is obtained from G by cloning u, then f (G ′;w) = f (G ;w).

I f (G ;w) ≤ f (G ′;w): clear since G ′ has an induced copy of G .

I f (G ′;w) ≤ f (G ;w): adapt an optimal strategy for G .

Corollary

If G is obtainable from a bipartite graph by cloning, then G is
online-perfect.
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A Spoiler strategy

Lemma (Spoiler Lemma)

Let U ⊆ V (G ), where U = {u1, . . . , ut}, and suppose that:

1. There are vertices x and y such that u1xyut is a path and
G [{u1, x , y , ut}] is bipartite, and

2. For each i , there is a common neighbor zi of ui and ui+1 such
that G [U ∪ {zi}] is bipartite.

If w is even, then f (G ;w) ≥ (1 + 1
2t )w.
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Minimal non-online-perfect graphs: lower bounds
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Corollary

If n is odd and n ≥ 5 and w is even,
then f (Cn;w) ≥ n

n−1w.

I Apply Spoiler Lemma with
t = (n − 1)/2.
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Summary

Theorem
A graph is online-perfect if and only if it does not have an induced
copy of any of the following:

. . .

Cn for odd n at least 5 C+
5 P2

5 The bull

I For odd n and n ≥ 5, we have f (Cn;w) = ( n
n−1 + o(1))w .

I (54 − o(1))w ≤ f (C+
5 ;w) ≤ (32 + o(1))w .

I Thm: f (P2
5 ;w) = (54 + o(1))w .

I For the bull B: (76 − o(1))w ≤ f (B;w) ≤ (32 + o(1))w .

Open Problems

Determine the asymptotics of

f (C+
5 ;w), f (B;w), f (G;w).

Thank You.
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Determine the asymptotics of f (C+
5 ;w), f (B;w), f (G;w).

Thank You.



Summary
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