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» Consider a game between Algorithm and Spoiler.

» Spoiler selects a point x € R. Each open unit interval can
have at most w selected points; we call w the width of the
game.

» Algorithm assigns x a color. Colors must be distinct on open
unit intervals.

» Open: How many colors does Algorithm need?

» The greedy algorithm uses at most 2w — 1 colors.
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Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek)

There is a strategy for Spoiler that forces Algorithm to use at
least L%WJ colors.

» This forces 3k colors in a game of width 2k.
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For a graph G, the G-coloring game of width w is played in
rounds between Spoiler and Algorithm:

» Spoiler chooses a vertex v € V(G) and plays a token x at v.
» Algorithm assigns x a color.
The associated token graph H is obtained from G by replacing
each vertex v with the complete graph on the tokens at v.
Algorithm must give a proper coloring of H and wants to
minimize the number of colors used.
Spoiler must ensure that x(H) < w and wants to force many
colors.
The value of the game, denoted f(G; w), is the number of
colors needed by an optimal strategy for Algorithm.
Let G be the graph on R with uv € E(G) if and only if
|lu—v| <1
3w < f(G;w) <2w—1.



Bipartite graphs

» A graph G is online-perfect if f(G;w) = w.



Bipartite graphs
» A graph G is online-perfect if f(G;w) = w.

Proposition
Every bipartite graph is online-perfect.



Bipartite graphs
» A graph G is online-perfect if f(G;w) = w.

Proposition
Every bipartite graph is online-perfect.

» Choose a linear ordering on
a set of w colors.

> >



Bipartite graphs
» A graph G is online-perfect if f(G;w) = w.

Proposition
Every bipartite graph is online-perfect.

» Choose a linear ordering on
a set of w colors.

> Tokens played at the left

part are assigned colors
greedily in order.

1



Bipartite graphs
» A graph G is online-perfect if f(G;w) = w.

Proposition
Every bipartite graph is online-perfect.

» Choose a linear ordering on
a set of w colors.

> Tokens played at the left
part are assigned colors

LI T \| [ T[] greedily in order.

EEEEE » Tokens played at the right
part are assigned colors
greedily in reverse order.




Bipartite graphs
» A graph G is online-perfect if f(G;w) = w.

Proposition
Every bipartite graph is online-perfect.

» Choose a linear ordering on
a set of w colors.

> Tokens played at the left
part are assigned colors

LI T \| [ T[] greedily in order.

EEEEE » Tokens played at the right
part are assigned colors
greedily in reverse order.




Bipartite graphs
» A graph G is online-perfect if f(G;w) = w.

Proposition
Every bipartite graph is online-perfect.

» Choose a linear ordering on
a set of w colors.

> Tokens played at the left
part are assigned colors

LI T \| [ T[] greedily in order.

EEEEE » Tokens played at the right
part are assigned colors
greedily in reverse order.




Bipartite graphs
» A graph G is online-perfect if f(G;w) = w.

Proposition
Every bipartite graph is online-perfect.

» Choose a linear ordering on
a set of w colors.

> Tokens played at the left
part are assigned colors

LI T \| [ T[] greedily in order.

EEEEE » Tokens played at the right
part are assigned colors
greedily in reverse order.




Bipartite graphs

» A graph G is online-perfect if f(G;w) = w.

Proposition

Every bipartite graph is online-perfect.

» Choose a linear ordering on
a set of w colors.

> Tokens played at the left
part are assigned colors
greedily in order.

» Tokens played at the right

part are assigned colors
greedily in reverse order.



Bipartite graphs

» A graph G is online-perfect if f(G;w) = w.

Proposition

Every bipartite graph is online-perfect.

» Choose a linear ordering on
a set of w colors.

> Tokens played at the left
part are assigned colors
greedily in order.

» Tokens played at the right

part are assigned colors
greedily in reverse order.



Bipartite graphs

» A graph G is online-perfect if f(G;w) = w.

Proposition

Every bipartite graph is online-perfect.

» Choose a linear ordering on
a set of w colors.

> Tokens played at the left
part are assigned colors
greedily in order.

» Tokens played at the right

part are assigned colors
greedily in reverse order.



Bipartite graphs

» A graph G is online-perfect if f(G;w) = w.

Proposition

Every bipartite graph is online-perfect.

» Choose a linear ordering on
a set of w colors.

> Tokens played at the left
part are assigned colors
greedily in order.

» Tokens played at the right
part are assigned colors
greedily in reverse order.



Bipartite graphs
» A graph G is online-perfect if f(G;w) = w.

Proposition
Every bipartite graph is online-perfect.

» Choose a linear ordering on
a set of w colors.

> Tokens played at the left
part are assigned colors
greedily in order.

» Tokens played at the right
part are assigned colors
greedily in reverse order.




Bipartite graphs
» A graph G is online-perfect if f(G;w) = w.

Proposition
Every bipartite graph is online-perfect.

» Choose a linear ordering on
a set of w colors.

> Tokens played at the left
part are assigned colors
greedily in order.

» Tokens played at the right
part are assigned colors
greedily in reverse order.




Bipartite graphs
» A graph G is online-perfect if f(G;w) = w.

Proposition
Every bipartite graph is online-perfect.

» Choose a linear ordering on
a set of w colors.

>< » Tokens played at the left
part are assigned colors
LT 1] \ [ le]e[e]e] greedily in order.
T T T[T T » Tokens played at the right
part are assigned colors
elel T 1L [T Tele] greedily in reverse order.




Bipartite graphs
» A graph G is online-perfect if f(G;w) = w.

Proposition
Every bipartite graph is online-perfect.

» Choose a linear ordering on
a set of w colors.

>< » Tokens played at the left
part are assigned colors
LT 1] \ [ le]e[e]e] greedily in order.
T T T 11— [T Telo| » Tokens played at the right
part are assigned colors
elel T 1L [T Tele] greedily in reverse order.




Bipartite graphs

» A graph G is online-perfect if f(G;w) = w.

Proposition

Every bipartite graph is online-perfect.
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Choose a linear ordering on
a set of w colors.

Tokens played at the left
part are assigned colors
greedily in order.

Tokens played at the right
part are assigned colors
greedily in reverse order.

A conflict would imply the
token graph has a clique on
more than w vertices.
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Twins

Vertices u and u are twins in G if they have the same
neighborhood in G — {u, u'}.

Both uv’ € E(G) and uu’ & E(G) are possible.

Given u € V(G), we may clone u to produce a new graph G’
with an additional vertex ¢/ that is a twin of G.

Fact: a graph G is P4-free if and only if G is obtainable from
a single vertex by cloning.
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Proposition

If G’ is obtained from G by cloning u, then f(G'; w) = f(G; w).

» f(G;w) < f(G’;w): clear since G’ has an induced copy of G.
» f(G';w) < f(G; w): adapt an optimal strategy for G.

Corollary
If G is obtainable from a bipartite graph by cloning, then G is
online-perfect.



Characterization of online-perfect graphs

Theorem
Let G be a graph. The following are equivalent.

1. G is online-perfect.



Characterization of online-perfect graphs

Theorem
Let G be a graph. The following are equivalent.

1. G is online-perfect.
2. f(G;2)=2.



Characterization of online-perfect graphs

Theorem
Let G be a graph. The following are equivalent.

1. G is online-perfect.

2. 1(G;2) =

3. G does not have an induced copy of any of the following:
N /\\/\\'“ PN //\\
/4 AN, \

C, for odd n at least 5 C; P52 The bull



Characterization of online-perfect graphs

Theorem
Let G be a graph. The following are equivalent.

1. G is online-perfect.

2. 1(G;2) =
3. G does not have an induced copy of any of the following:
N /\\/\\ I RPN //\\
- /4 \_/ A IARA
C, for odd n at least 5 C; P52 The bull

4. G is obtainable from a bipartite graph by cloning vertices.



Characterization of online-perfect graphs

Theorem
Let G be a graph. The following are equivalent.

1. G is online-perfect.

2. 1(G;2) =
3. G does not have an induced copy of any of the following:
N /\\/\\ I RPN //\\
- /4 \_/ A IARA
C, for odd n at least 5 C; P52 The bull

4. G is obtainable from a bipartite graph by cloning vertices.

> (1) — (2): clear



Characterization of online-perfect graphs

Theorem
Let G be a graph. The following are equivalent.

1. G is online-perfect.

2. 1(G;2) =
3. G does not have an induced copy of any of the following:
N /\\/\\ I RPN //\\
- /4 \_/ A IARA
C, for odd n at least 5 C; P52 The bull

4. G is obtainable from a bipartite graph by cloning vertices.

> (1) — (2): clear
» (2) — (3): Spoiler Lemma



Characterization of online-perfect graphs

Theorem
Let G be a graph. The following are equivalent.

1. G is online-perfect.

2. f(G;2)=2.
3. G does not have an induced copy of any of the following:
N T
\/\// \\/ \/ /\//\\ ~
NN VARV
C, for odd n at least 5 C; P52 The bull

4. G is obtainable from a bipartite graph by cloning vertices.

> (1) — (2): clear
» (2) — (3): Spoiler Lemma
> (3) — (4): roughly a page of structural graph theory.



Characterization of online-perfect graphs

Theorem
Let G be a graph. The following are equivalent.

1. G is online-perfect.

2. f(G;2)=2.
3. G does not have an induced copy of any of the following:
N T
\/\// \\/ \/ AN //\\ ~_
NN VARV
C, for odd n at least 5 C; P52 The bull

4. G is obtainable from a bipartite graph by cloning vertices.

( ): clear

( ): Spoiler Lemma

> (3) — (4): roughly a page of structural graph theory.
( )

. previous corollary



Characterization of online-perfect graphs

Theorem
Let G be a graph. The following are equivalent.

1. G is online-perfect.

2. f(G;2)=2.
3. G does not have an induced copy of any of the following:
N T
\/\// \\/ \/ /\//\\ ~
NN VARV
C, for odd n at least 5 C; P52 The bull

4. G is obtainable from a bipartite graph by cloning vertices.

» Cor: P;-free graphs C online-perfect graphs C perfect graphs



Characterization of online-perfect graphs

Theorem
Let G be a graph. The following are equivalent.

1. G is online-perfect.

2. f(G;2)=2.
3. G does not have an induced copy of any of the following:
N T
\/\// \\/ \/ /\//\\ ~
NN VARV
C, for odd n at least 5 C; P52 The bull

4. G is obtainable from a bipartite graph by cloning vertices.

» Cor: P;-free graphs C online-perfect graphs C perfect graphs

» 4': G is online-perfect if and only if it the result of replacing
each vertex in a bipartite graph with a P4-free graph.
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A Spoiler strategy

Lemma (Spoiler Lemma)
Let U C V(G), where U = {u1,...,ut}, and suppose that:
1. There are vertices x and y such that uixyu; is a path and
G[{u1, x,y, ut}] is bipartite, and
2. For each i, there is a common neighbor z; of u; and uj,1 such
that G[U U {z}] is bipartite.
If w is even, then f(G; w) > (1+ & )w.

uy Ut

N
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Lemma (Spoiler Lemma)
Let U C V(G), where U ={u1,...,u:}, and suppose that:
1. There are vertices x and y such that uixyu; is a path and
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T Corollary
/ \ If n is odd and n > 5 and w is even,
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Lemma (Spoiler Lemma)
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7]
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> Apply Spoiler Lemma with
n t= (n — 1)/2.
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Lemma (Spoiler Lemma)
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G[{u1,x,y, u}] is bipartite, and
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Lemma (Spoiler Lemma)
Let U C V(G), where U ={u1,...,u:}, and suppose that:
1. There are vertices x and y such that uixyu; is a path and
G[{u1,x,y, u}] is bipartite, and
2. For each i, there is a common neighbor z; of uj and uj11 such
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LCNG oL Corollary

If G is the bull graph and w is even,

e then f(G;w) > tw.

> Apply Spoiler Lemma with t = 3.



Minimal non-online-perfect graphs: upper bounds

Proposition (Fractional Coloring Strategy)
If G has a (p, g)-coloring, then f(G;w) < p [2—"‘;1 In particular,
7(G:w) < (2xr(G) + o(L))w.



Minimal non-online-perfect graphs: upper bounds

Proposition (Fractional Coloring Strategy)
If G has a (p, g)-coloring, then f(G;w) < p [2—"‘;1 In particular,
7(G:w) < (2xr(G) + o(L))w.

o Corollary
If n'is odd, then f(Cp;w) < (527 + o(1))w.

n




Minimal non-online-perfect graphs: upper bounds

Proposition (Fractional Coloring Strategy)
If G has a (p, g)-coloring, then f(G;w) < p [2—"‘;1 In particular,
7(G:w) < (2xr(G) + o(L))w.

o Corollary
\ If n'is odd, then f(Cp;w) < (527 + o(1))w.
\ / » Apply Prop. with xr(C,) = 2_”1.
~N_ !



Minimal non-online-perfect graphs: upper bounds

Proposition (Fractional Coloring Strategy)
If G has a (p, g)-coloring, then f(G;w) < p [2—"‘;1 In particular,
7(G:w) < (2xr(G) + o(L))w.

Corollary

N //\\/ IfG € {CS, P2}, then £(G;w) < (3 +o0(1))w.
"

/N

G’



Minimal non-online-perfect graphs: upper bounds

Proposition (Fractional Coloring Strategy)
If G has a (p, g)-coloring, then f(G;w) < p [2—"‘;1 In particular,
7(G:w) < (2xr(G) + o(L))w.

Corollary

N //\\/ IfG € {CS, P2}, then £(G;w) < (3 +o0(1))w.
"

/N

— » Apply Prop. with x¢(G) = x(G) = 3.
G



Minimal non-online-perfect graphs: upper bounds

Proposition (Fractional Coloring Strategy)
If G has a (p, g)-coloring, then f(G;w) < p [2—"‘;1 In particular,
7(G:w) < (2xr(G) + o(L))w.

Corollary

\/ If G is the bull graph and w is even, then
F(Giw) < (3 +o(1))w.



Minimal non-online-perfect graphs: upper bounds

Proposition (Fractional Coloring Strategy)
If G has a (p, g)-coloring, then f(G;w) < p [2—"‘;1 In particular,
7(G:w) < (2xr(G) + o(L))w.

Corollary
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Theorem
A graph is online-perfect if and only if it does not have an induced
copy of any of the following:

CNT VY L E //\
A2 R AN AR AV I vl
C, for odd n at least 5 Cr P2 The bull

For odd n and n > 5, we have f(Cp,; w) = (nfl +o(1))w.
(5 —o(W)w < f(C5+; w) < (3 +o(1))w

Thm: f(PZ;w) = (2 + o(1))w.

For the bull B: (& — o(1))w < f(B;w) < (3 + o(1))w

vV VvYyyvw

Open Problems
Determine the asymptotics of f(C.h; w), f(B; w), f(G;w).

Thank You.
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