
Online coloring blowups of a known graph

Kevin G. Milans (milans@math.wvu.edu)
Michael C. Wigal (mcwigal@mix.wvu.edu)

West Virginia University

AMS Spring Central Sectional Meeting
Indiana University
Bloomington, IN

April 2, 2017

A motivating problem

−3 −2 −1 0 1 2 3

< w

< w

I Consider a game between Algorithm and Spoiler.

I Spoiler selects a point x ∈ R. Each open unit interval can
have at most w selected points; we call w the width of the
game.

I Algorithm assigns x a color. Colors must be distinct on open
unit intervals.

I Open: How many colors does Algorithm need?

I The greedy algorithm uses at most 2w − 1 colors.

A motivating problem

−3 −2 −1 0 1 2 3

< w

< w

I Consider a game between Algorithm and Spoiler.

I Spoiler selects a point x ∈ R. Each open unit interval can
have at most w selected points; we call w the width of the
game.

I Algorithm assigns x a color. Colors must be distinct on open
unit intervals.

I Open: How many colors does Algorithm need?

I The greedy algorithm uses at most 2w − 1 colors.

A motivating problem

−3 −2 −1 0 1 2 3

< w

< w

I Consider a game between Algorithm and Spoiler.

I Spoiler selects a point x ∈ R. Each open unit interval can
have at most w selected points; we call w the width of the
game.

I Algorithm assigns x a color. Colors must be distinct on open
unit intervals.

I Open: How many colors does Algorithm need?

I The greedy algorithm uses at most 2w − 1 colors.

A motivating problem

−3 −2 −1 0 1 2 3

< w

< w

I Consider a game between Algorithm and Spoiler.

I Spoiler selects a point x ∈ R. Each open unit interval can
have at most w selected points; we call w the width of the
game.

I Algorithm assigns x a color. Colors must be distinct on open
unit intervals.

I Open: How many colors does Algorithm need?

I The greedy algorithm uses at most 2w − 1 colors.

A motivating problem

−3 −2 −1 0 1 2 3

< w

< w

I Consider a game between Algorithm and Spoiler.

I Spoiler selects a point x ∈ R. Each open unit interval can
have at most w selected points; we call w the width of the
game.

I Algorithm assigns x a color. Colors must be distinct on open
unit intervals.

I Open: How many colors does Algorithm need?

I The greedy algorithm uses at most 2w − 1 colors.

A motivating problem

−3 −2 −1 0 1 2 3

< w

< w

I Consider a game between Algorithm and Spoiler.

I Spoiler selects a point x ∈ R. Each open unit interval can
have at most w selected points; we call w the width of the
game.

I Algorithm assigns x a color. Colors must be distinct on open
unit intervals.

I Open: How many colors does Algorithm need?

I The greedy algorithm uses at most 2w − 1 colors.

A motivating problem

−3 −2 −1 0 1 2 3

< w

< w

I Consider a game between Algorithm and Spoiler.

I Spoiler selects a point x ∈ R. Each open unit interval can
have at most w selected points; we call w the width of the
game.

I Algorithm assigns x a color. Colors must be distinct on open
unit intervals.

I Open: How many colors does Algorithm need?

I The greedy algorithm uses at most 2w − 1 colors.

A motivating problem

−3 −2 −1 0 1 2 3

< w

< w

I Consider a game between Algorithm and Spoiler.

I Spoiler selects a point x ∈ R. Each open unit interval can
have at most w selected points; we call w the width of the
game.

I Algorithm assigns x a color. Colors must be distinct on open
unit intervals.

I Open: How many colors does Algorithm need?

I The greedy algorithm uses at most 2w − 1 colors.

A motivating problem

−3 −2 −1 0 1 2 3

< w

< w

I Consider a game between Algorithm and Spoiler.

I Spoiler selects a point x ∈ R. Each open unit interval can
have at most w selected points; we call w the width of the
game.

I Algorithm assigns x a color. Colors must be distinct on open
unit intervals.

I Open: How many colors does Algorithm need?

I The greedy algorithm uses at most 2w − 1 colors.

A motivating problem

−3 −2 −1 0 1 2 3

< w

< w

I Consider a game between Algorithm and Spoiler.

I Spoiler selects a point x ∈ R. Each open unit interval can
have at most w selected points; we call w the width of the
game.

I Algorithm assigns x a color. Colors must be distinct on open
unit intervals.

I Open: How many colors does Algorithm need?

I The greedy algorithm uses at most 2w − 1 colors.

A motivating problem

−3 −2 −1 0 1 2 3

< w

< w

I Consider a game between Algorithm and Spoiler.

I Spoiler selects a point x ∈ R. Each open unit interval can
have at most w selected points; we call w the width of the
game.

I Algorithm assigns x a color. Colors must be distinct on open
unit intervals.

I Open: How many colors does Algorithm need?

I The greedy algorithm uses at most 2w − 1 colors.

A motivating problem

−3 −2 −1 0 1 2 3

< w

< w

I Consider a game between Algorithm and Spoiler.

I Spoiler selects a point x ∈ R. Each open unit interval can
have at most w selected points; we call w the width of the
game.

I Algorithm assigns x a color. Colors must be distinct on open
unit intervals.

I Open: How many colors does Algorithm need?

I The greedy algorithm uses at most 2w − 1 colors.

A motivating problem

−3 −2 −1 0 1 2 3

< w

< w

I Consider a game between Algorithm and Spoiler.

I Spoiler selects a point x ∈ R. Each open unit interval can
have at most w selected points; we call w the width of the
game.

I Algorithm assigns x a color. Colors must be distinct on open
unit intervals.

I Open: How many colors does Algorithm need?

I The greedy algorithm uses at most 2w − 1 colors.

A motivating problem

−3 −2 −1 0 1 2 3

< w

< w

I Consider a game between Algorithm and Spoiler.

I Spoiler selects a point x ∈ R. Each open unit interval can
have at most w selected points; we call w the width of the
game.

I Algorithm assigns x a color. Colors must be distinct on open
unit intervals.

I Open: How many colors does Algorithm need?

I The greedy algorithm uses at most 2w − 1 colors.

A motivating problem

−3 −2 −1 0 1 2 3

< w

< w

I Consider a game between Algorithm and Spoiler.

I Spoiler selects a point x ∈ R. Each open unit interval can
have at most w selected points; we call w the width of the
game.

I Algorithm assigns x a color. Colors must be distinct on open
unit intervals.

I Open: How many colors does Algorithm need?

I The greedy algorithm uses at most 2w − 1 colors.

A motivating problem

−1 0 1

k k

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek)

There is a strategy for Spoiler that forces Algorithm to use at
least

⌊
3
2w
⌋

colors.

I Spoiler plays k times at −1, forcing k “old” colors.

I Spoiler plays in [0, 1] so that new colors are left of old colors.

I After at most 2k rounds, Spoiler forces at least k new colors.

I Spoiler plays k times at a point in [−1, 0] that conflicts with
new colors in [0, 1] but is far away from old colors.

A motivating problem

−1 0 1

k

k

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek)

There is a strategy for Spoiler that forces Algorithm to use at
least

⌊
3
2w
⌋

colors.

I Spoiler plays k times at −1, forcing k “old” colors.

I Spoiler plays in [0, 1] so that new colors are left of old colors.

I After at most 2k rounds, Spoiler forces at least k new colors.

I Spoiler plays k times at a point in [−1, 0] that conflicts with
new colors in [0, 1] but is far away from old colors.

A motivating problem

−1 0 1

k

k

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek)

There is a strategy for Spoiler that forces Algorithm to use at
least

⌊
3
2w
⌋

colors.

I Spoiler plays k times at −1, forcing k “old” colors.

I Spoiler plays in [0, 1] so that new colors are left of old colors.

I After at most 2k rounds, Spoiler forces at least k new colors.

I Spoiler plays k times at a point in [−1, 0] that conflicts with
new colors in [0, 1] but is far away from old colors.

A motivating problem

−1 0 1

k

k

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek)

There is a strategy for Spoiler that forces Algorithm to use at
least

⌊
3
2w
⌋

colors.

I Spoiler plays k times at −1, forcing k “old” colors.

I Spoiler plays in [0, 1] so that new colors are left of old colors.

I After at most 2k rounds, Spoiler forces at least k new colors.

I Spoiler plays k times at a point in [−1, 0] that conflicts with
new colors in [0, 1] but is far away from old colors.

A motivating problem

−1 0 1

k

k

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek)

There is a strategy for Spoiler that forces Algorithm to use at
least

⌊
3
2w
⌋

colors.

I Spoiler plays k times at −1, forcing k “old” colors.

I Spoiler plays in [0, 1] so that new colors are left of old colors.

I After at most 2k rounds, Spoiler forces at least k new colors.

I Spoiler plays k times at a point in [−1, 0] that conflicts with
new colors in [0, 1] but is far away from old colors.

A motivating problem

−1 0 1

k

k

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek)

There is a strategy for Spoiler that forces Algorithm to use at
least

⌊
3
2w
⌋

colors.

I Spoiler plays k times at −1, forcing k “old” colors.

I Spoiler plays in [0, 1] so that new colors are left of old colors.

I After at most 2k rounds, Spoiler forces at least k new colors.

I Spoiler plays k times at a point in [−1, 0] that conflicts with
new colors in [0, 1] but is far away from old colors.

A motivating problem

−1 0 1

k

k

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek)

There is a strategy for Spoiler that forces Algorithm to use at
least

⌊
3
2w
⌋

colors.

I Spoiler plays k times at −1, forcing k “old” colors.

I Spoiler plays in [0, 1] so that new colors are left of old colors.

I After at most 2k rounds, Spoiler forces at least k new colors.

I Spoiler plays k times at a point in [−1, 0] that conflicts with
new colors in [0, 1] but is far away from old colors.

A motivating problem

−1 0 1

k

k

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek)

There is a strategy for Spoiler that forces Algorithm to use at
least

⌊
3
2w
⌋

colors.

I Spoiler plays k times at −1, forcing k “old” colors.

I Spoiler plays in [0, 1] so that new colors are left of old colors.

I After at most 2k rounds, Spoiler forces at least k new colors.

I Spoiler plays k times at a point in [−1, 0] that conflicts with
new colors in [0, 1] but is far away from old colors.

A motivating problem

−1 0 1

k

k

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek)

There is a strategy for Spoiler that forces Algorithm to use at
least

⌊
3
2w
⌋

colors.

I Spoiler plays k times at −1, forcing k “old” colors.

I Spoiler plays in [0, 1] so that new colors are left of old colors.

I After at most 2k rounds, Spoiler forces at least k new colors.

I Spoiler plays k times at a point in [−1, 0] that conflicts with
new colors in [0, 1] but is far away from old colors.

A motivating problem

−1 0 1

k

k

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek)

There is a strategy for Spoiler that forces Algorithm to use at
least

⌊
3
2w
⌋

colors.

I Spoiler plays k times at −1, forcing k “old” colors.

I Spoiler plays in [0, 1] so that new colors are left of old colors.

I After at most 2k rounds, Spoiler forces at least k new colors.

I Spoiler plays k times at a point in [−1, 0] that conflicts with
new colors in [0, 1] but is far away from old colors.

A motivating problem

−1 0 1

k

k

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek)

There is a strategy for Spoiler that forces Algorithm to use at
least

⌊
3
2w
⌋

colors.

I Spoiler plays k times at −1, forcing k “old” colors.

I Spoiler plays in [0, 1] so that new colors are left of old colors.

I After at most 2k rounds, Spoiler forces at least k new colors.

I Spoiler plays k times at a point in [−1, 0] that conflicts with
new colors in [0, 1] but is far away from old colors.

A motivating problem

−1 0 1

k

k

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek)

There is a strategy for Spoiler that forces Algorithm to use at
least

⌊
3
2w
⌋

colors.

I Spoiler plays k times at −1, forcing k “old” colors.

I Spoiler plays in [0, 1] so that new colors are left of old colors.

I After at most 2k rounds, Spoiler forces at least k new colors.

I Spoiler plays k times at a point in [−1, 0] that conflicts with
new colors in [0, 1] but is far away from old colors.

A motivating problem

−1 0 1

k

k

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek)

There is a strategy for Spoiler that forces Algorithm to use at
least

⌊
3
2w
⌋

colors.

I Spoiler plays k times at −1, forcing k “old” colors.

I Spoiler plays in [0, 1] so that new colors are left of old colors.

I After at most 2k rounds, Spoiler forces at least k new colors.

I Spoiler plays k times at a point in [−1, 0] that conflicts with
new colors in [0, 1] but is far away from old colors.

A motivating problem

−1 0 1

k

k

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek)

There is a strategy for Spoiler that forces Algorithm to use at
least

⌊
3
2w
⌋

colors.

I Spoiler plays k times at −1, forcing k “old” colors.

I Spoiler plays in [0, 1] so that new colors are left of old colors.

I After at most 2k rounds, Spoiler forces at least k new colors.

I Spoiler plays k times at a point in [−1, 0] that conflicts with
new colors in [0, 1] but is far away from old colors.

A motivating problem

−1 0 1

k k

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek)

There is a strategy for Spoiler that forces Algorithm to use at
least

⌊
3
2w
⌋

colors.

I Spoiler plays k times at −1, forcing k “old” colors.

I Spoiler plays in [0, 1] so that new colors are left of old colors.

I After at most 2k rounds, Spoiler forces at least k new colors.

I Spoiler plays k times at a point in [−1, 0] that conflicts with
new colors in [0, 1] but is far away from old colors.

A motivating problem

−1 0 1

k k

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek)

There is a strategy for Spoiler that forces Algorithm to use at
least

⌊
3
2w
⌋

colors.

I Spoiler plays k times at −1, forcing k “old” colors.

I Spoiler plays in [0, 1] so that new colors are left of old colors.

I After at most 2k rounds, Spoiler forces at least k new colors.

I Spoiler plays k times at a point in [−1, 0] that conflicts with
new colors in [0, 1] but is far away from old colors.

A motivating problem

−1 0 1

k k

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek)

There is a strategy for Spoiler that forces Algorithm to use at
least

⌊
3
2w
⌋

colors.

I This forces 3k colors in a game of width 2k.

A generalization to graphs

I For a graph G , the G -coloring game of width w is played in
rounds between Spoiler and Algorithm:

I Spoiler chooses a vertex v ∈ V (G) and plays a token x at v .
I Algorithm assigns x a color.

I The associated token graph H is obtained from G by replacing
each vertex v with the complete graph on the tokens at v .

I Algorithm must give a proper coloring of H and wants to
minimize the number of colors used.

I Spoiler must ensure that χ(H) ≤ w and wants to force many
colors.

I The value of the game, denoted f (G ;w), is the number of
colors needed by an optimal strategy for Algorithm.

I Let G be the graph on R with uv ∈ E (G) if and only if
|u − v | < 1.

I
⌊
3
2w
⌋
≤ f (G;w) ≤ 2w − 1.

A generalization to graphs

I For a graph G , the G -coloring game of width w is played in
rounds between Spoiler and Algorithm:

I Spoiler chooses a vertex v ∈ V (G) and plays a token x at v .

I Algorithm assigns x a color.

I The associated token graph H is obtained from G by replacing
each vertex v with the complete graph on the tokens at v .

I Algorithm must give a proper coloring of H and wants to
minimize the number of colors used.

I Spoiler must ensure that χ(H) ≤ w and wants to force many
colors.

I The value of the game, denoted f (G ;w), is the number of
colors needed by an optimal strategy for Algorithm.

I Let G be the graph on R with uv ∈ E (G) if and only if
|u − v | < 1.

I
⌊
3
2w
⌋
≤ f (G;w) ≤ 2w − 1.

A generalization to graphs

I For a graph G , the G -coloring game of width w is played in
rounds between Spoiler and Algorithm:

I Spoiler chooses a vertex v ∈ V (G) and plays a token x at v .
I Algorithm assigns x a color.

I The associated token graph H is obtained from G by replacing
each vertex v with the complete graph on the tokens at v .

I Algorithm must give a proper coloring of H and wants to
minimize the number of colors used.

I Spoiler must ensure that χ(H) ≤ w and wants to force many
colors.

I The value of the game, denoted f (G ;w), is the number of
colors needed by an optimal strategy for Algorithm.

I Let G be the graph on R with uv ∈ E (G) if and only if
|u − v | < 1.

I
⌊
3
2w
⌋
≤ f (G;w) ≤ 2w − 1.

A generalization to graphs

I For a graph G , the G -coloring game of width w is played in
rounds between Spoiler and Algorithm:

I Spoiler chooses a vertex v ∈ V (G) and plays a token x at v .
I Algorithm assigns x a color.

I The associated token graph H is obtained from G by replacing
each vertex v with the complete graph on the tokens at v .

I Algorithm must give a proper coloring of H and wants to
minimize the number of colors used.

I Spoiler must ensure that χ(H) ≤ w and wants to force many
colors.

I The value of the game, denoted f (G ;w), is the number of
colors needed by an optimal strategy for Algorithm.

I Let G be the graph on R with uv ∈ E (G) if and only if
|u − v | < 1.

I
⌊
3
2w
⌋
≤ f (G;w) ≤ 2w − 1.

A generalization to graphs

I For a graph G , the G -coloring game of width w is played in
rounds between Spoiler and Algorithm:

I Spoiler chooses a vertex v ∈ V (G) and plays a token x at v .
I Algorithm assigns x a color.

I The associated token graph H is obtained from G by replacing
each vertex v with the complete graph on the tokens at v .

I Algorithm must give a proper coloring of H and wants to
minimize the number of colors used.

I Spoiler must ensure that χ(H) ≤ w and wants to force many
colors.

I The value of the game, denoted f (G ;w), is the number of
colors needed by an optimal strategy for Algorithm.

I Let G be the graph on R with uv ∈ E (G) if and only if
|u − v | < 1.

I
⌊
3
2w
⌋
≤ f (G;w) ≤ 2w − 1.

A generalization to graphs

I For a graph G , the G -coloring game of width w is played in
rounds between Spoiler and Algorithm:

I Spoiler chooses a vertex v ∈ V (G) and plays a token x at v .
I Algorithm assigns x a color.

I The associated token graph H is obtained from G by replacing
each vertex v with the complete graph on the tokens at v .

I Algorithm must give a proper coloring of H and wants to
minimize the number of colors used.

I Spoiler must ensure that χ(H) ≤ w and wants to force many
colors.

I The value of the game, denoted f (G ;w), is the number of
colors needed by an optimal strategy for Algorithm.

I Let G be the graph on R with uv ∈ E (G) if and only if
|u − v | < 1.

I
⌊
3
2w
⌋
≤ f (G;w) ≤ 2w − 1.

A generalization to graphs

I For a graph G , the G -coloring game of width w is played in
rounds between Spoiler and Algorithm:

I Spoiler chooses a vertex v ∈ V (G) and plays a token x at v .
I Algorithm assigns x a color.

I The associated token graph H is obtained from G by replacing
each vertex v with the complete graph on the tokens at v .

I Algorithm must give a proper coloring of H and wants to
minimize the number of colors used.

I Spoiler must ensure that χ(H) ≤ w and wants to force many
colors.

I The value of the game, denoted f (G ;w), is the number of
colors needed by an optimal strategy for Algorithm.

I Let G be the graph on R with uv ∈ E (G) if and only if
|u − v | < 1.

I
⌊
3
2w
⌋
≤ f (G;w) ≤ 2w − 1.

A generalization to graphs

I For a graph G , the G -coloring game of width w is played in
rounds between Spoiler and Algorithm:

I Spoiler chooses a vertex v ∈ V (G) and plays a token x at v .
I Algorithm assigns x a color.

I The associated token graph H is obtained from G by replacing
each vertex v with the complete graph on the tokens at v .

I Algorithm must give a proper coloring of H and wants to
minimize the number of colors used.

I Spoiler must ensure that χ(H) ≤ w and wants to force many
colors.

I The value of the game, denoted f (G ;w), is the number of
colors needed by an optimal strategy for Algorithm.

I Let G be the graph on R with uv ∈ E (G) if and only if
|u − v | < 1.

I
⌊
3
2w
⌋
≤ f (G;w) ≤ 2w − 1.

A generalization to graphs

I For a graph G , the G -coloring game of width w is played in
rounds between Spoiler and Algorithm:

I Spoiler chooses a vertex v ∈ V (G) and plays a token x at v .
I Algorithm assigns x a color.

I The associated token graph H is obtained from G by replacing
each vertex v with the complete graph on the tokens at v .

I Algorithm must give a proper coloring of H and wants to
minimize the number of colors used.

I Spoiler must ensure that χ(H) ≤ w and wants to force many
colors.

I The value of the game, denoted f (G ;w), is the number of
colors needed by an optimal strategy for Algorithm.

I Let G be the graph on R with uv ∈ E (G) if and only if
|u − v | < 1.

I
⌊
3
2w
⌋
≤ f (G;w) ≤ 2w − 1.

Bipartite graphs

I A graph G is online-perfect if f (G ;w) = w .

Proposition

Every bipartite graph is online-perfect.

Bipartite graphs

I A graph G is online-perfect if f (G ;w) = w .

Proposition

Every bipartite graph is online-perfect.

Bipartite graphs

I A graph G is online-perfect if f (G ;w) = w .

Proposition

Every bipartite graph is online-perfect.

I Choose a linear ordering on
a set of w colors.

I Tokens played at the left
part are assigned colors
greedily in order.

I Tokens played at the right
part are assigned colors
greedily in reverse order.

I A conflict would imply the
token graph has a clique on
more than w vertices.

Bipartite graphs

I A graph G is online-perfect if f (G ;w) = w .

Proposition

Every bipartite graph is online-perfect.

I Choose a linear ordering on
a set of w colors.

I Tokens played at the left
part are assigned colors
greedily in order.

I Tokens played at the right
part are assigned colors
greedily in reverse order.

I A conflict would imply the
token graph has a clique on
more than w vertices.

Bipartite graphs

I A graph G is online-perfect if f (G ;w) = w .

Proposition

Every bipartite graph is online-perfect.

I Choose a linear ordering on
a set of w colors.

I Tokens played at the left
part are assigned colors
greedily in order.

I Tokens played at the right
part are assigned colors
greedily in reverse order.

I A conflict would imply the
token graph has a clique on
more than w vertices.

Bipartite graphs

I A graph G is online-perfect if f (G ;w) = w .

Proposition

Every bipartite graph is online-perfect.

I Choose a linear ordering on
a set of w colors.

I Tokens played at the left
part are assigned colors
greedily in order.

I Tokens played at the right
part are assigned colors
greedily in reverse order.

I A conflict would imply the
token graph has a clique on
more than w vertices.

Bipartite graphs

I A graph G is online-perfect if f (G ;w) = w .

Proposition

Every bipartite graph is online-perfect.

I Choose a linear ordering on
a set of w colors.

I Tokens played at the left
part are assigned colors
greedily in order.

I Tokens played at the right
part are assigned colors
greedily in reverse order.

I A conflict would imply the
token graph has a clique on
more than w vertices.

Bipartite graphs

I A graph G is online-perfect if f (G ;w) = w .

Proposition

Every bipartite graph is online-perfect.

I Choose a linear ordering on
a set of w colors.

I Tokens played at the left
part are assigned colors
greedily in order.

I Tokens played at the right
part are assigned colors
greedily in reverse order.

I A conflict would imply the
token graph has a clique on
more than w vertices.

Bipartite graphs

I A graph G is online-perfect if f (G ;w) = w .

Proposition

Every bipartite graph is online-perfect.

I Choose a linear ordering on
a set of w colors.

I Tokens played at the left
part are assigned colors
greedily in order.

I Tokens played at the right
part are assigned colors
greedily in reverse order.

I A conflict would imply the
token graph has a clique on
more than w vertices.

Bipartite graphs

I A graph G is online-perfect if f (G ;w) = w .

Proposition

Every bipartite graph is online-perfect.

I Choose a linear ordering on
a set of w colors.

I Tokens played at the left
part are assigned colors
greedily in order.

I Tokens played at the right
part are assigned colors
greedily in reverse order.

I A conflict would imply the
token graph has a clique on
more than w vertices.

Bipartite graphs

I A graph G is online-perfect if f (G ;w) = w .

Proposition

Every bipartite graph is online-perfect.

I Choose a linear ordering on
a set of w colors.

I Tokens played at the left
part are assigned colors
greedily in order.

I Tokens played at the right
part are assigned colors
greedily in reverse order.

I A conflict would imply the
token graph has a clique on
more than w vertices.

Bipartite graphs

I A graph G is online-perfect if f (G ;w) = w .

Proposition

Every bipartite graph is online-perfect.

I Choose a linear ordering on
a set of w colors.

I Tokens played at the left
part are assigned colors
greedily in order.

I Tokens played at the right
part are assigned colors
greedily in reverse order.

I A conflict would imply the
token graph has a clique on
more than w vertices.

Bipartite graphs

I A graph G is online-perfect if f (G ;w) = w .

Proposition

Every bipartite graph is online-perfect.

I Choose a linear ordering on
a set of w colors.

I Tokens played at the left
part are assigned colors
greedily in order.

I Tokens played at the right
part are assigned colors
greedily in reverse order.

I A conflict would imply the
token graph has a clique on
more than w vertices.

Bipartite graphs

I A graph G is online-perfect if f (G ;w) = w .

Proposition

Every bipartite graph is online-perfect.

I Choose a linear ordering on
a set of w colors.

I Tokens played at the left
part are assigned colors
greedily in order.

I Tokens played at the right
part are assigned colors
greedily in reverse order.

I A conflict would imply the
token graph has a clique on
more than w vertices.

Bipartite graphs

I A graph G is online-perfect if f (G ;w) = w .

Proposition

Every bipartite graph is online-perfect.

I Choose a linear ordering on
a set of w colors.

I Tokens played at the left
part are assigned colors
greedily in order.

I Tokens played at the right
part are assigned colors
greedily in reverse order.

I A conflict would imply the
token graph has a clique on
more than w vertices.

Bipartite graphs

I A graph G is online-perfect if f (G ;w) = w .

Proposition

Every bipartite graph is online-perfect.

I Choose a linear ordering on
a set of w colors.

I Tokens played at the left
part are assigned colors
greedily in order.

I Tokens played at the right
part are assigned colors
greedily in reverse order.

I A conflict would imply the
token graph has a clique on
more than w vertices.

Bipartite graphs

I A graph G is online-perfect if f (G ;w) = w .

Proposition

Every bipartite graph is online-perfect.

I Choose a linear ordering on
a set of w colors.

I Tokens played at the left
part are assigned colors
greedily in order.

I Tokens played at the right
part are assigned colors
greedily in reverse order.

I A conflict would imply the
token graph has a clique on
more than w vertices.

Twins

u

u′

I Vertices u and u′ are twins in G if they have the same
neighborhood in G − {u, u′}.

I Both uu′ ∈ E (G) and uu′ 6∈ E (G) are possible.

I Given u ∈ V (G), we may clone u to produce a new graph G ′

with an additional vertex u′ that is a twin of G .

I Fact: a graph G is P4-free if and only if G is obtainable from
a single vertex by cloning.

Twins

u

u′

I Vertices u and u′ are twins in G if they have the same
neighborhood in G − {u, u′}.

I Both uu′ ∈ E (G) and uu′ 6∈ E (G) are possible.

I Given u ∈ V (G), we may clone u to produce a new graph G ′

with an additional vertex u′ that is a twin of G .

I Fact: a graph G is P4-free if and only if G is obtainable from
a single vertex by cloning.

Twins

u

u′

I Vertices u and u′ are twins in G if they have the same
neighborhood in G − {u, u′}.

I Both uu′ ∈ E (G) and uu′ 6∈ E (G) are possible.

I Given u ∈ V (G), we may clone u to produce a new graph G ′

with an additional vertex u′ that is a twin of G .

I Fact: a graph G is P4-free if and only if G is obtainable from
a single vertex by cloning.

Twins

u

u′

I Vertices u and u′ are twins in G if they have the same
neighborhood in G − {u, u′}.

I Both uu′ ∈ E (G) and uu′ 6∈ E (G) are possible.

I Given u ∈ V (G), we may clone u to produce a new graph G ′

with an additional vertex u′ that is a twin of G .

I Fact: a graph G is P4-free if and only if G is obtainable from
a single vertex by cloning.

Twins

u

u′

I Vertices u and u′ are twins in G if they have the same
neighborhood in G − {u, u′}.

I Both uu′ ∈ E (G) and uu′ 6∈ E (G) are possible.

I Given u ∈ V (G), we may clone u to produce a new graph G ′

with an additional vertex u′ that is a twin of G .

I Fact: a graph G is P4-free if and only if G is obtainable from
a single vertex by cloning.

Twins

u

u′

Proposition

If G ′ is obtained from G by cloning u, then f (G ′;w) = f (G ;w).

I f (G ;w) ≤ f (G ′;w): clear since G ′ has an induced copy of G .

I f (G ′;w) ≤ f (G ;w): adapt an optimal strategy for G .

Corollary

If G is obtainable from a bipartite graph by cloning, then G is
online-perfect.

Twins

u

u′

Proposition

If G ′ is obtained from G by cloning u, then f (G ′;w) = f (G ;w).

I f (G ;w) ≤ f (G ′;w): clear since G ′ has an induced copy of G .

I f (G ′;w) ≤ f (G ;w): adapt an optimal strategy for G .

Corollary

If G is obtainable from a bipartite graph by cloning, then G is
online-perfect.

Twins

u

u′

Proposition

If G ′ is obtained from G by cloning u, then f (G ′;w) = f (G ;w).

I f (G ;w) ≤ f (G ′;w): clear since G ′ has an induced copy of G .

I f (G ′;w) ≤ f (G ;w): adapt an optimal strategy for G .

Corollary

If G is obtainable from a bipartite graph by cloning, then G is
online-perfect.

Twins

u

u′

Proposition

If G ′ is obtained from G by cloning u, then f (G ′;w) = f (G ;w).

I f (G ;w) ≤ f (G ′;w): clear since G ′ has an induced copy of G .

I f (G ′;w) ≤ f (G ;w): adapt an optimal strategy for G .

Corollary

If G is obtainable from a bipartite graph by cloning, then G is
online-perfect.

Characterization of online-perfect graphs

Theorem
Let G be a graph. The following are equivalent.

1. G is online-perfect.

2. f (G ; 2) = 2.

3. G does not have an induced copy of any of the following:

. . .

Cn for odd n at least 5 C+
5 P2

5 The bull

4. G is obtainable from a bipartite graph by cloning vertices.

Characterization of online-perfect graphs

Theorem
Let G be a graph. The following are equivalent.

1. G is online-perfect.

2. f (G ; 2) = 2.

3. G does not have an induced copy of any of the following:

. . .

Cn for odd n at least 5 C+
5 P2

5 The bull

4. G is obtainable from a bipartite graph by cloning vertices.

Characterization of online-perfect graphs

Theorem
Let G be a graph. The following are equivalent.

1. G is online-perfect.

2. f (G ; 2) = 2.

3. G does not have an induced copy of any of the following:

. . .

Cn for odd n at least 5 C+
5 P2

5 The bull

4. G is obtainable from a bipartite graph by cloning vertices.

Characterization of online-perfect graphs

Theorem
Let G be a graph. The following are equivalent.

1. G is online-perfect.

2. f (G ; 2) = 2.

3. G does not have an induced copy of any of the following:

. . .

Cn for odd n at least 5 C+
5 P2

5 The bull

4. G is obtainable from a bipartite graph by cloning vertices.

Characterization of online-perfect graphs

Theorem
Let G be a graph. The following are equivalent.

1. G is online-perfect.

2. f (G ; 2) = 2.

3. G does not have an induced copy of any of the following:

. . .

Cn for odd n at least 5 C+
5 P2

5 The bull

4. G is obtainable from a bipartite graph by cloning vertices.

I (1) → (2): clear

I (2) → (3): Spoiler Lemma

I (3) → (4): roughly a page of structural graph theory.

I (4) → (1): previous corollary

Characterization of online-perfect graphs

Theorem
Let G be a graph. The following are equivalent.

1. G is online-perfect.

2. f (G ; 2) = 2.

3. G does not have an induced copy of any of the following:

. . .

Cn for odd n at least 5 C+
5 P2

5 The bull

4. G is obtainable from a bipartite graph by cloning vertices.

I (1) → (2): clear

I (2) → (3): Spoiler Lemma

I (3) → (4): roughly a page of structural graph theory.

I (4) → (1): previous corollary

Characterization of online-perfect graphs

Theorem
Let G be a graph. The following are equivalent.

1. G is online-perfect.

2. f (G ; 2) = 2.

3. G does not have an induced copy of any of the following:

. . .

Cn for odd n at least 5 C+
5 P2

5 The bull

4. G is obtainable from a bipartite graph by cloning vertices.

I (1) → (2): clear

I (2) → (3): Spoiler Lemma

I (3) → (4): roughly a page of structural graph theory.

I (4) → (1): previous corollary

Characterization of online-perfect graphs

Theorem
Let G be a graph. The following are equivalent.

1. G is online-perfect.

2. f (G ; 2) = 2.

3. G does not have an induced copy of any of the following:

. . .

Cn for odd n at least 5 C+
5 P2

5 The bull

4. G is obtainable from a bipartite graph by cloning vertices.

I (1) → (2): clear

I (2) → (3): Spoiler Lemma

I (3) → (4): roughly a page of structural graph theory.

I (4) → (1): previous corollary

Characterization of online-perfect graphs

Theorem
Let G be a graph. The following are equivalent.

1. G is online-perfect.

2. f (G ; 2) = 2.

3. G does not have an induced copy of any of the following:

. . .

Cn for odd n at least 5 C+
5 P2

5 The bull

4. G is obtainable from a bipartite graph by cloning vertices.

I Cor: P4-free graphs (online-perfect graphs (perfect graphs

I 4’: G is online-perfect if and only if it the result of replacing
each vertex in a bipartite graph with a P4-free graph.

Characterization of online-perfect graphs

Theorem
Let G be a graph. The following are equivalent.

1. G is online-perfect.

2. f (G ; 2) = 2.

3. G does not have an induced copy of any of the following:

. . .

Cn for odd n at least 5 C+
5 P2

5 The bull

4. G is obtainable from a bipartite graph by cloning vertices.

I Cor: P4-free graphs (online-perfect graphs (perfect graphs

I 4’: G is online-perfect if and only if it the result of replacing
each vertex in a bipartite graph with a P4-free graph.

A Spoiler strategy

Lemma (Spoiler Lemma)

Let U ⊆ V (G), where U = {u1, . . . , ut}, and suppose that:

1. There are vertices x and y such that u1xyut is a path and
G [{u1, x , y , ut}] is bipartite, and

2. For each i , there is a common neighbor zi of ui and ui+1 such
that G [U ∪ {zi}] is bipartite.

If w is even, then f (G ;w) ≥ (1 + 1
2t)w.

u1 ut

x yzi

A Spoiler strategy

Lemma (Spoiler Lemma)

Let U ⊆ V (G), where U = {u1, . . . , ut}, and suppose that:

1. There are vertices x and y such that u1xyut is a path and
G [{u1, x , y , ut}] is bipartite, and

2. For each i , there is a common neighbor zi of ui and ui+1 such
that G [U ∪ {zi}] is bipartite.

If w is even, then f (G ;w) ≥ (1 + 1
2t)w.

u1 ut
x y

zi

A Spoiler strategy

Lemma (Spoiler Lemma)

Let U ⊆ V (G), where U = {u1, . . . , ut}, and suppose that:

1. There are vertices x and y such that u1xyut is a path and
G [{u1, x , y , ut}] is bipartite, and

2. For each i , there is a common neighbor zi of ui and ui+1 such
that G [U ∪ {zi}] is bipartite.

If w is even, then f (G ;w) ≥ (1 + 1
2t)w.

u1 ut

x y

zi

A Spoiler strategy

Lemma (Spoiler Lemma)

Let U ⊆ V (G), where U = {u1, . . . , ut}, and suppose that:

1. There are vertices x and y such that u1xyut is a path and
G [{u1, x , y , ut}] is bipartite, and

2. For each i , there is a common neighbor zi of ui and ui+1 such
that G [U ∪ {zi}] is bipartite.

If w is even, then f (G ;w) ≥ (1 + 1
2t)w.

u1 ut

x y

zi

Minimal non-online-perfect graphs: lower bounds

Lemma (Spoiler Lemma)

Let U ⊆ V (G), where U = {u1, . . . , ut}, and suppose that:

1. There are vertices x and y such that u1xyut is a path and
G [{u1, x , y , ut}] is bipartite, and

2. For each i , there is a common neighbor zi of ui and ui+1 such
that G [U ∪ {zi}] is bipartite.

If w is even, then f (G ;w) ≥ (1 + 1
2t)w.

Cn

u1 ut

Corollary

If n is odd and n ≥ 5 and w is even,
then f (Cn;w) ≥ n

n−1w.

I Apply Spoiler Lemma with
t = (n − 1)/2.

Minimal non-online-perfect graphs: lower bounds

Lemma (Spoiler Lemma)

Let U ⊆ V (G), where U = {u1, . . . , ut}, and suppose that:

1. There are vertices x and y such that u1xyut is a path and
G [{u1, x , y , ut}] is bipartite, and

2. For each i , there is a common neighbor zi of ui and ui+1 such
that G [U ∪ {zi}] is bipartite.

If w is even, then f (G ;w) ≥ (1 + 1
2t)w.

Cn

u1 ut

Corollary

If n is odd and n ≥ 5 and w is even,
then f (Cn;w) ≥ n

n−1w.

I Apply Spoiler Lemma with
t = (n − 1)/2.

Minimal non-online-perfect graphs: lower bounds

Lemma (Spoiler Lemma)

Let U ⊆ V (G), where U = {u1, . . . , ut}, and suppose that:

1. There are vertices x and y such that u1xyut is a path and
G [{u1, x , y , ut}] is bipartite, and

2. For each i , there is a common neighbor zi of ui and ui+1 such
that G [U ∪ {zi}] is bipartite.

If w is even, then f (G ;w) ≥ (1 + 1
2t)w.

C+
5 P2

5

Corollary

If G ∈ {C+
5 ,P

2
5} and w is even, then

f (G ;w) ≥ 5
4w.

I Apply Spoiler Lemma with t = 2.

Minimal non-online-perfect graphs: lower bounds

Lemma (Spoiler Lemma)

Let U ⊆ V (G), where U = {u1, . . . , ut}, and suppose that:

1. There are vertices x and y such that u1xyut is a path and
G [{u1, x , y , ut}] is bipartite, and

2. For each i , there is a common neighbor zi of ui and ui+1 such
that G [U ∪ {zi}] is bipartite.

If w is even, then f (G ;w) ≥ (1 + 1
2t)w.

C+
5 P2

5

Corollary

If G ∈ {C+
5 ,P

2
5} and w is even, then

f (G ;w) ≥ 5
4w.

I Apply Spoiler Lemma with t = 2.

Minimal non-online-perfect graphs: lower bounds

Lemma (Spoiler Lemma)

Let U ⊆ V (G), where U = {u1, . . . , ut}, and suppose that:

1. There are vertices x and y such that u1xyut is a path and
G [{u1, x , y , ut}] is bipartite, and

2. For each i , there is a common neighbor zi of ui and ui+1 such
that G [U ∪ {zi}] is bipartite.

If w is even, then f (G ;w) ≥ (1 + 1
2t)w.

u1

u2

u3

Corollary

If G is the bull graph and w is even,
then f (G ;w) ≥ 7

6w.

I Apply Spoiler Lemma with t = 3.

Minimal non-online-perfect graphs: lower bounds

Lemma (Spoiler Lemma)

Let U ⊆ V (G), where U = {u1, . . . , ut}, and suppose that:

1. There are vertices x and y such that u1xyut is a path and
G [{u1, x , y , ut}] is bipartite, and

2. For each i , there is a common neighbor zi of ui and ui+1 such
that G [U ∪ {zi}] is bipartite.

If w is even, then f (G ;w) ≥ (1 + 1
2t)w.

u1

u2

u3 Corollary

If G is the bull graph and w is even,
then f (G ;w) ≥ 7

6w.

I Apply Spoiler Lemma with t = 3.

Minimal non-online-perfect graphs: upper bounds

Proposition (Fractional Coloring Strategy)

If G has a (p, q)-coloring, then f (G ;w) ≤ p
⌈

w
2q

⌉
. In particular,

f (G ;w) ≤ (12χf (G) + o(1))w .

Minimal non-online-perfect graphs: upper bounds

Proposition (Fractional Coloring Strategy)

If G has a (p, q)-coloring, then f (G ;w) ≤ p
⌈

w
2q

⌉
. In particular,

f (G ;w) ≤ (12χf (G) + o(1))w .

Cn

Corollary

If n is odd, then f (Cn;w) ≤ (n
n−1 + o(1))w.

I Apply Prop. with χf (Cn) = 2n
n−1 .

Minimal non-online-perfect graphs: upper bounds

Proposition (Fractional Coloring Strategy)

If G has a (p, q)-coloring, then f (G ;w) ≤ p
⌈

w
2q

⌉
. In particular,

f (G ;w) ≤ (12χf (G) + o(1))w .

Cn

Corollary

If n is odd, then f (Cn;w) ≤ (n
n−1 + o(1))w.

I Apply Prop. with χf (Cn) = 2n
n−1 .

Minimal non-online-perfect graphs: upper bounds

Proposition (Fractional Coloring Strategy)

If G has a (p, q)-coloring, then f (G ;w) ≤ p
⌈

w
2q

⌉
. In particular,

f (G ;w) ≤ (12χf (G) + o(1))w .

C+
5 P2

5

Corollary

If G ∈ {C+
5 ,P

2
5}, then f (G ;w) ≤ (32 +o(1))w.

I Apply Prop. with χf (G) = χ(G) = 3.

Minimal non-online-perfect graphs: upper bounds

Proposition (Fractional Coloring Strategy)

If G has a (p, q)-coloring, then f (G ;w) ≤ p
⌈

w
2q

⌉
. In particular,

f (G ;w) ≤ (12χf (G) + o(1))w .

C+
5 P2

5

Corollary

If G ∈ {C+
5 ,P

2
5}, then f (G ;w) ≤ (32 +o(1))w.

I Apply Prop. with χf (G) = χ(G) = 3.

Minimal non-online-perfect graphs: upper bounds

Proposition (Fractional Coloring Strategy)

If G has a (p, q)-coloring, then f (G ;w) ≤ p
⌈

w
2q

⌉
. In particular,

f (G ;w) ≤ (12χf (G) + o(1))w .

Corollary

If G is the bull graph and w is even, then
f (G ;w) ≤ (32 + o(1))w.

I Apply Prop. with χf (G) = χ(G) = 3.

Minimal non-online-perfect graphs: upper bounds

Proposition (Fractional Coloring Strategy)

If G has a (p, q)-coloring, then f (G ;w) ≤ p
⌈

w
2q

⌉
. In particular,

f (G ;w) ≤ (12χf (G) + o(1))w .

Corollary

If G is the bull graph and w is even, then
f (G ;w) ≤ (32 + o(1))w.

I Apply Prop. with χf (G) = χ(G) = 3.

Summary

Theorem
A graph is online-perfect if and only if it does not have an induced
copy of any of the following:

. . .

Cn for odd n at least 5 C+
5 P2

5 The bull

I For odd n and n ≥ 5, we have f (Cn;w) = (n
n−1 + o(1))w .

I (54 − o(1))w ≤ f (C+
5 ;w) ≤ (32 + o(1))w .

I Thm: f (P2
5 ;w) = (54 + o(1))w .

I For the bull B: (76 − o(1))w ≤ f (B;w) ≤ (32 + o(1))w .

Open Problems

Determine the asymptotics of

f (C+
5 ;w), f (B;w), f (G;w).

Thank You.

Summary

Theorem
A graph is online-perfect if and only if it does not have an induced
copy of any of the following:

. . .

Cn for odd n at least 5 C+
5 P2

5 The bull

I For odd n and n ≥ 5, we have f (Cn;w) = (n
n−1 + o(1))w .

I (54 − o(1))w ≤ f (C+
5 ;w) ≤ (32 + o(1))w .

I Thm: f (P2
5 ;w) = (54 + o(1))w .

I For the bull B: (76 − o(1))w ≤ f (B;w) ≤ (32 + o(1))w .

Open Problems

Determine the asymptotics of

f (C+
5 ;w), f (B;w), f (G;w).

Thank You.

Summary

Theorem
A graph is online-perfect if and only if it does not have an induced
copy of any of the following:

. . .

Cn for odd n at least 5 C+
5 P2

5 The bull

I For odd n and n ≥ 5, we have f (Cn;w) = (n
n−1 + o(1))w .

I (54 − o(1))w ≤ f (C+
5 ;w) ≤ (32 + o(1))w .

I Thm: f (P2
5 ;w) = (54 + o(1))w .

I For the bull B: (76 − o(1))w ≤ f (B;w) ≤ (32 + o(1))w .

Open Problems

Determine the asymptotics of

f (C+
5 ;w), f (B;w), f (G;w).

Thank You.

Summary

Theorem
A graph is online-perfect if and only if it does not have an induced
copy of any of the following:

. . .

Cn for odd n at least 5 C+
5 P2

5 The bull

I For odd n and n ≥ 5, we have f (Cn;w) = (n
n−1 + o(1))w .

I (54 − o(1))w ≤ f (C+
5 ;w) ≤ (32 + o(1))w .

I Thm: f (P2
5 ;w) = (54 + o(1))w .

I For the bull B: (76 − o(1))w ≤ f (B;w) ≤ (32 + o(1))w .

Open Problems

Determine the asymptotics of

f (C+
5 ;w), f (B;w), f (G;w).

Thank You.

Summary

Theorem
A graph is online-perfect if and only if it does not have an induced
copy of any of the following:

. . .

Cn for odd n at least 5 C+
5 P2

5 The bull

I For odd n and n ≥ 5, we have f (Cn;w) = (n
n−1 + o(1))w .

I (54 − o(1))w ≤ f (C+
5 ;w) ≤ (32 + o(1))w .

I Thm: f (P2
5 ;w) = (54 + o(1))w .

I For the bull B: (76 − o(1))w ≤ f (B;w) ≤ (32 + o(1))w .

Open Problems

Determine the asymptotics of

f (C+
5 ;w), f (B;w), f (G;w).

Thank You.

Summary

Theorem
A graph is online-perfect if and only if it does not have an induced
copy of any of the following:

. . .

Cn for odd n at least 5 C+
5 P2

5 The bull

I For odd n and n ≥ 5, we have f (Cn;w) = (n
n−1 + o(1))w .

I (54 − o(1))w ≤ f (C+
5 ;w) ≤ (32 + o(1))w .

I Thm: f (P2
5 ;w) = (54 + o(1))w .

I For the bull B: (76 − o(1))w ≤ f (B;w) ≤ (32 + o(1))w .

Open Problems

Determine the asymptotics of f (C+
5 ;w),

f (B;w), f (G;w).

Thank You.

Summary

Theorem
A graph is online-perfect if and only if it does not have an induced
copy of any of the following:

. . .

Cn for odd n at least 5 C+
5 P2

5 The bull

I For odd n and n ≥ 5, we have f (Cn;w) = (n
n−1 + o(1))w .

I (54 − o(1))w ≤ f (C+
5 ;w) ≤ (32 + o(1))w .

I Thm: f (P2
5 ;w) = (54 + o(1))w .

I For the bull B: (76 − o(1))w ≤ f (B;w) ≤ (32 + o(1))w .

Open Problems

Determine the asymptotics of f (C+
5 ;w), f (B;w),

f (G;w).

Thank You.

Summary

Theorem
A graph is online-perfect if and only if it does not have an induced
copy of any of the following:

. . .

Cn for odd n at least 5 C+
5 P2

5 The bull

I For odd n and n ≥ 5, we have f (Cn;w) = (n
n−1 + o(1))w .

I (54 − o(1))w ≤ f (C+
5 ;w) ≤ (32 + o(1))w .

I Thm: f (P2
5 ;w) = (54 + o(1))w .

I For the bull B: (76 − o(1))w ≤ f (B;w) ≤ (32 + o(1))w .

Open Problems

Determine the asymptotics of f (C+
5 ;w), f (B;w), f (G;w).

Thank You.

Summary

Theorem
A graph is online-perfect if and only if it does not have an induced
copy of any of the following:

. . .

Cn for odd n at least 5 C+
5 P2

5 The bull

I For odd n and n ≥ 5, we have f (Cn;w) = (n
n−1 + o(1))w .

I (54 − o(1))w ≤ f (C+
5 ;w) ≤ (32 + o(1))w .

I Thm: f (P2
5 ;w) = (54 + o(1))w .

I For the bull B: (76 − o(1))w ≤ f (B;w) ≤ (32 + o(1))w .

Open Problems

Determine the asymptotics of f (C+
5 ;w), f (B;w), f (G;w).

Thank You.

	Introduction
	Characterization of online-perfect graphs
	Minimal graphs that are not online-perfect

