Online coloring blowups of a known graph

Kevin G. Milans (milans@math.wvu.edu) Michael C. Wigal (mcwigal@mix.wvu.edu)

West Virginia University

AMS Spring Central Sectional Meeting Indiana University Bloomington, IN April 2, 2017

• Consider a game between Algorithm and Spoiler.

- Consider a game between Algorithm and Spoiler.
- Spoiler selects a point x ∈ ℝ. Each open unit interval can have at most w selected points; we call w the width of the game.

- Consider a game between Algorithm and Spoiler.
- Spoiler selects a point x ∈ ℝ. Each open unit interval can have at most w selected points; we call w the width of the game.
- Algorithm assigns x a color. Colors must be distinct on open unit intervals.

- Consider a game between Algorithm and Spoiler.
- Spoiler selects a point x ∈ ℝ. Each open unit interval can have at most w selected points; we call w the width of the game.
- Algorithm assigns x a color. Colors must be distinct on open unit intervals.

- Consider a game between Algorithm and Spoiler.
- Spoiler selects a point x ∈ ℝ. Each open unit interval can have at most w selected points; we call w the width of the game.
- Algorithm assigns x a color. Colors must be distinct on open unit intervals.

- Consider a game between Algorithm and Spoiler.
- Spoiler selects a point x ∈ ℝ. Each open unit interval can have at most w selected points; we call w the width of the game.
- Algorithm assigns x a color. Colors must be distinct on open unit intervals.

- Consider a game between Algorithm and Spoiler.
- Spoiler selects a point x ∈ ℝ. Each open unit interval can have at most w selected points; we call w the width of the game.
- Algorithm assigns x a color. Colors must be distinct on open unit intervals.

- Consider a game between Algorithm and Spoiler.
- Spoiler selects a point x ∈ ℝ. Each open unit interval can have at most w selected points; we call w the width of the game.
- Algorithm assigns x a color. Colors must be distinct on open unit intervals.

- Consider a game between Algorithm and Spoiler.
- Spoiler selects a point x ∈ ℝ. Each open unit interval can have at most w selected points; we call w the width of the game.
- Algorithm assigns x a color. Colors must be distinct on open unit intervals.

- Consider a game between Algorithm and Spoiler.
- Spoiler selects a point x ∈ ℝ. Each open unit interval can have at most w selected points; we call w the width of the game.
- Algorithm assigns x a color. Colors must be distinct on open unit intervals.

- Consider a game between Algorithm and Spoiler.
- Spoiler selects a point x ∈ ℝ. Each open unit interval can have at most w selected points; we call w the width of the game.
- Algorithm assigns x a color. Colors must be distinct on open unit intervals.

- Consider a game between Algorithm and Spoiler.
- Spoiler selects a point x ∈ ℝ. Each open unit interval can have at most w selected points; we call w the width of the game.
- Algorithm assigns x a color. Colors must be distinct on open unit intervals.

- Consider a game between Algorithm and Spoiler.
- Spoiler selects a point x ∈ ℝ. Each open unit interval can have at most w selected points; we call w the width of the game.
- Algorithm assigns x a color. Colors must be distinct on open unit intervals.

- Consider a game between Algorithm and Spoiler.
- Spoiler selects a point x ∈ ℝ. Each open unit interval can have at most w selected points; we call w the width of the game.
- Algorithm assigns x a color. Colors must be distinct on open unit intervals.
- Open: How many colors does Algorithm need?

- Consider a game between Algorithm and Spoiler.
- Spoiler selects a point x ∈ ℝ. Each open unit interval can have at most w selected points; we call w the width of the game.
- Algorithm assigns x a color. Colors must be distinct on open unit intervals.
- Open: How many colors does Algorithm need?
- The greedy algorithm uses at most 2w 1 colors.

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek) There is a strategy for Spoiler that forces Algorithm to use at least $\lfloor \frac{3}{2}w \rfloor$ colors.

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek) There is a strategy for Spoiler that forces Algorithm to use at least $|\frac{3}{2}w|$ colors.

▶ Spoiler plays k times at −1, forcing k "old" colors.

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek) There is a strategy for Spoiler that forces Algorithm to use at least $|\frac{3}{2}w|$ colors.

▶ Spoiler plays k times at −1, forcing k "old" colors.

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek) There is a strategy for Spoiler that forces Algorithm to use at least $\lfloor \frac{3}{2}w \rfloor$ colors.

- Spoiler plays k times at -1, forcing k "old" colors.
- ▶ Spoiler plays in [0, 1] so that new colors are left of old colors.

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek) There is a strategy for Spoiler that forces Algorithm to use at least $\lfloor \frac{3}{2}w \rfloor$ colors.

- Spoiler plays k times at -1, forcing k "old" colors.
- ▶ Spoiler plays in [0,1] so that new colors are left of old colors.

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek) There is a strategy for Spoiler that forces Algorithm to use at least $\lfloor \frac{3}{2}w \rfloor$ colors.

- ▶ Spoiler plays k times at −1, forcing k "old" colors.
- ▶ Spoiler plays in [0,1] so that new colors are left of old colors.

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek) There is a strategy for Spoiler that forces Algorithm to use at least $\lfloor \frac{3}{2}w \rfloor$ colors.

- ▶ Spoiler plays k times at −1, forcing k "old" colors.
- ▶ Spoiler plays in [0,1] so that new colors are left of old colors.

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek) There is a strategy for Spoiler that forces Algorithm to use at least $\lfloor \frac{3}{2}w \rfloor$ colors.

- Spoiler plays k times at -1, forcing k "old" colors.
- ▶ Spoiler plays in [0, 1] so that new colors are left of old colors.

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek) There is a strategy for Spoiler that forces Algorithm to use at least $\lfloor \frac{3}{2}w \rfloor$ colors.

- ▶ Spoiler plays k times at −1, forcing k "old" colors.
- ▶ Spoiler plays in [0,1] so that new colors are left of old colors.

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek) There is a strategy for Spoiler that forces Algorithm to use at least $\lfloor \frac{3}{2}w \rfloor$ colors.

- Spoiler plays k times at -1, forcing k "old" colors.
- ▶ Spoiler plays in [0, 1] so that new colors are left of old colors.

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek) There is a strategy for Spoiler that forces Algorithm to use at least $\lfloor \frac{3}{2}w \rfloor$ colors.

- ▶ Spoiler plays k times at −1, forcing k "old" colors.
- ▶ Spoiler plays in [0,1] so that new colors are left of old colors.

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek) There is a strategy for Spoiler that forces Algorithm to use at least $\lfloor \frac{3}{2}w \rfloor$ colors.

- ▶ Spoiler plays k times at −1, forcing k "old" colors.
- ▶ Spoiler plays in [0,1] so that new colors are left of old colors.

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek) There is a strategy for Spoiler that forces Algorithm to use at least $\lfloor \frac{3}{2}w \rfloor$ colors.

- Spoiler plays k times at -1, forcing k "old" colors.
- ▶ Spoiler plays in [0,1] so that new colors are left of old colors.
- After at most 2k rounds, Spoiler forces at least k new colors.

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek) There is a strategy for Spoiler that forces Algorithm to use at least $\lfloor \frac{3}{2}w \rfloor$ colors.

- Spoiler plays k times at -1, forcing k "old" colors.
- ▶ Spoiler plays in [0,1] so that new colors are left of old colors.
- After at most 2k rounds, Spoiler forces at least k new colors.
- Spoiler plays k times at a point in [−1,0] that conflicts with new colors in [0,1] but is far away from old colors.

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek) There is a strategy for Spoiler that forces Algorithm to use at least $\lfloor \frac{3}{2}w \rfloor$ colors.

- Spoiler plays k times at -1, forcing k "old" colors.
- ▶ Spoiler plays in [0,1] so that new colors are left of old colors.
- After at most 2k rounds, Spoiler forces at least k new colors.
- Spoiler plays k times at a point in [−1,0] that conflicts with new colors in [0,1] but is far away from old colors.

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek) There is a strategy for Spoiler that forces Algorithm to use at least $\lfloor \frac{3}{2}w \rfloor$ colors.

- Spoiler plays k times at -1, forcing k "old" colors.
- ▶ Spoiler plays in [0, 1] so that new colors are left of old colors.
- After at most 2k rounds, Spoiler forces at least k new colors.
- Spoiler plays k times at a point in [−1,0] that conflicts with new colors in [0,1] but is far away from old colors.

Prop. (Bosek, Felsner, Kloch, Krawczyk, Matecki, Micek) There is a strategy for Spoiler that forces Algorithm to use at least $|\frac{3}{2}w|$ colors.

▶ This forces 3k colors in a game of width 2k.

A generalization to graphs

► For a graph *G*, the *G*-coloring game of width *w* is played in rounds between Spoiler and Algorithm:

A generalization to graphs

- ► For a graph *G*, the *G*-coloring game of width *w* is played in rounds between Spoiler and Algorithm:
 - Spoiler chooses a vertex $v \in V(G)$ and plays a token x at v.

A generalization to graphs

- ► For a graph *G*, the *G*-coloring game of width *w* is played in rounds between Spoiler and Algorithm:
 - Spoiler chooses a vertex $v \in V(G)$ and plays a token x at v.
 - Algorithm assigns x a color.
- ► For a graph *G*, the *G*-coloring game of width *w* is played in rounds between Spoiler and Algorithm:
 - Spoiler chooses a vertex $v \in V(G)$ and plays a token x at v.
 - Algorithm assigns *x* a color.
- ► The associated token graph H is obtained from G by replacing each vertex v with the complete graph on the tokens at v.

- ► For a graph *G*, the *G*-coloring game of width *w* is played in rounds between Spoiler and Algorithm:
 - Spoiler chooses a vertex $v \in V(G)$ and plays a token x at v.
 - Algorithm assigns x a color.
- ► The associated token graph *H* is obtained from *G* by replacing each vertex *v* with the complete graph on the tokens at *v*.
- Algorithm must give a proper coloring of H and wants to minimize the number of colors used.

- ► For a graph *G*, the *G*-coloring game of width *w* is played in rounds between Spoiler and Algorithm:
 - Spoiler chooses a vertex $v \in V(G)$ and plays a token x at v.
 - Algorithm assigns x a color.
- ► The associated token graph H is obtained from G by replacing each vertex v with the complete graph on the tokens at v.
- Algorithm must give a proper coloring of H and wants to minimize the number of colors used.
- Spoiler must ensure that $\chi(H) \leq w$ and wants to force many colors.

- ► For a graph *G*, the *G*-coloring game of width *w* is played in rounds between Spoiler and Algorithm:
 - Spoiler chooses a vertex $v \in V(G)$ and plays a token x at v.
 - Algorithm assigns x a color.
- ► The associated token graph H is obtained from G by replacing each vertex v with the complete graph on the tokens at v.
- Algorithm must give a proper coloring of H and wants to minimize the number of colors used.
- Spoiler must ensure that $\chi(H) \leq w$ and wants to force many colors.
- ► The value of the game, denoted f(G; w), is the number of colors needed by an optimal strategy for Algorithm.

- ► For a graph *G*, the *G*-coloring game of width *w* is played in rounds between Spoiler and Algorithm:
 - Spoiler chooses a vertex $v \in V(G)$ and plays a token x at v.
 - Algorithm assigns x a color.
- ► The associated token graph H is obtained from G by replacing each vertex v with the complete graph on the tokens at v.
- Algorithm must give a proper coloring of H and wants to minimize the number of colors used.
- Spoiler must ensure that $\chi(H) \leq w$ and wants to force many colors.
- ► The value of the game, denoted f(G; w), is the number of colors needed by an optimal strategy for Algorithm.
- Let \mathbb{G} be the graph on \mathbb{R} with $uv \in E(\mathbb{G})$ if and only if |u-v| < 1.

- ► For a graph *G*, the *G*-coloring game of width *w* is played in rounds between Spoiler and Algorithm:
 - Spoiler chooses a vertex $v \in V(G)$ and plays a token x at v.
 - Algorithm assigns x a color.
- ► The associated token graph H is obtained from G by replacing each vertex v with the complete graph on the tokens at v.
- Algorithm must give a proper coloring of H and wants to minimize the number of colors used.
- Spoiler must ensure that $\chi(H) \leq w$ and wants to force many colors.
- ► The value of the game, denoted f(G; w), is the number of colors needed by an optimal strategy for Algorithm.
- Let \mathbb{G} be the graph on \mathbb{R} with $uv \in E(\mathbb{G})$ if and only if |u-v| < 1.

$$\left\lfloor \frac{3}{2}w \right\rfloor \leq f(\mathbb{G};w) \leq 2w-1.$$

• A graph G is online-perfect if f(G; w) = w.

• A graph G is online-perfect if f(G; w) = w.

Proposition

• A graph G is online-perfect if f(G; w) = w.

Proposition

Every bipartite graph is online-perfect.

 Choose a linear ordering on a set of w colors.

• A graph G is online-perfect if f(G; w) = w.

Proposition

- Choose a linear ordering on a set of w colors.
- Tokens played at the left part are assigned colors greedily in order.

• A graph G is online-perfect if f(G; w) = w.

Proposition

- Choose a linear ordering on a set of w colors.
- Tokens played at the left part are assigned colors greedily in order.
- Tokens played at the right part are assigned colors greedily in reverse order.

• A graph G is online-perfect if f(G; w) = w.

Proposition

- Choose a linear ordering on a set of w colors.
- Tokens played at the left part are assigned colors greedily in order.
- Tokens played at the right part are assigned colors greedily in reverse order.

• A graph G is online-perfect if f(G; w) = w.

Proposition

- Choose a linear ordering on a set of w colors.
- Tokens played at the left part are assigned colors greedily in order.
- Tokens played at the right part are assigned colors greedily in reverse order.

• A graph G is online-perfect if f(G; w) = w.

Proposition

- Choose a linear ordering on a set of w colors.
- Tokens played at the left part are assigned colors greedily in order.
- Tokens played at the right part are assigned colors greedily in reverse order.

• A graph G is online-perfect if f(G; w) = w.

Proposition

- Choose a linear ordering on a set of w colors.
- Tokens played at the left part are assigned colors greedily in order.
- Tokens played at the right part are assigned colors greedily in reverse order.

• A graph G is online-perfect if f(G; w) = w.

Proposition

- Choose a linear ordering on a set of w colors.
- Tokens played at the left part are assigned colors greedily in order.
- Tokens played at the right part are assigned colors greedily in reverse order.

• A graph G is online-perfect if f(G; w) = w.

Proposition

- Choose a linear ordering on a set of w colors.
- Tokens played at the left part are assigned colors greedily in order.
- Tokens played at the right part are assigned colors greedily in reverse order.

• A graph G is online-perfect if f(G; w) = w.

Proposition

- Choose a linear ordering on a set of w colors.
- Tokens played at the left part are assigned colors greedily in order.
- Tokens played at the right part are assigned colors greedily in reverse order.

• A graph G is online-perfect if f(G; w) = w.

Proposition

- Choose a linear ordering on a set of w colors.
- Tokens played at the left part are assigned colors greedily in order.
- Tokens played at the right part are assigned colors greedily in reverse order.

• A graph G is online-perfect if f(G; w) = w.

Proposition

- Choose a linear ordering on a set of w colors.
- Tokens played at the left part are assigned colors greedily in order.
- Tokens played at the right part are assigned colors greedily in reverse order.

• A graph G is online-perfect if f(G; w) = w.

Proposition

- Choose a linear ordering on a set of w colors.
- Tokens played at the left part are assigned colors greedily in order.
- Tokens played at the right part are assigned colors greedily in reverse order.

• A graph G is online-perfect if f(G; w) = w.

Proposition

- Choose a linear ordering on a set of w colors.
- Tokens played at the left part are assigned colors greedily in order.
- Tokens played at the right part are assigned colors greedily in reverse order.

• A graph G is online-perfect if f(G; w) = w.

Proposition

- Choose a linear ordering on a set of w colors.
- Tokens played at the left part are assigned colors greedily in order.
- Tokens played at the right part are assigned colors greedily in reverse order.
- A conflict would imply the token graph has a clique on more than w vertices.

► Vertices u and u' are twins in G if they have the same neighborhood in G - {u, u'}.

- ► Vertices u and u' are twins in G if they have the same neighborhood in G - {u, u'}.
- ▶ Both $uu' \in E(G)$ and $uu' \notin E(G)$ are possible.

- ► Vertices u and u' are twins in G if they have the same neighborhood in G - {u, u'}.
- ▶ Both $uu' \in E(G)$ and $uu' \notin E(G)$ are possible.
- ► Given u ∈ V(G), we may clone u to produce a new graph G' with an additional vertex u' that is a twin of G.

- ► Vertices u and u' are twins in G if they have the same neighborhood in G - {u, u'}.
- ▶ Both $uu' \in E(G)$ and $uu' \notin E(G)$ are possible.
- ► Given u ∈ V(G), we may clone u to produce a new graph G' with an additional vertex u' that is a twin of G.

- ► Vertices u and u' are twins in G if they have the same neighborhood in G - {u, u'}.
- ▶ Both $uu' \in E(G)$ and $uu' \notin E(G)$ are possible.
- ► Given u ∈ V(G), we may clone u to produce a new graph G' with an additional vertex u' that is a twin of G.
- ► Fact: a graph *G* is *P*₄-free if and only if *G* is obtainable from a single vertex by cloning.

Proposition

If G' is obtained from G by cloning u, then f(G'; w) = f(G; w).

Proposition

If G' is obtained from G by cloning u, then f(G'; w) = f(G; w).

• $f(G; w) \le f(G'; w)$: clear since G' has an induced copy of G.

Proposition

If G' is obtained from G by cloning u, then f(G'; w) = f(G; w).

- $f(G; w) \leq f(G'; w)$: clear since G' has an induced copy of G.
- $f(G'; w) \leq f(G; w)$: adapt an optimal strategy for G.

Proposition

If G' is obtained from G by cloning u, then f(G'; w) = f(G; w).

- $f(G; w) \le f(G'; w)$: clear since G' has an induced copy of G.
- $f(G'; w) \leq f(G; w)$: adapt an optimal strategy for G.

Corollary

If G is obtainable from a bipartite graph by cloning, then G is online-perfect.

Theorem

Let G be a graph. The following are equivalent.

1. G is online-perfect.

Theorem

Let G be a graph. The following are equivalent.

- 1. G is online-perfect.
- 2. f(G; 2) = 2.

Theorem

Let G be a graph. The following are equivalent.

- 1. G is online-perfect.
- 2. f(G; 2) = 2.

3. G does not have an induced copy of any of the following:

Theorem

Let G be a graph. The following are equivalent.

- 1. G is online-perfect.
- 2. f(G; 2) = 2.

3. G does not have an induced copy of any of the following:

Theorem

Let G be a graph. The following are equivalent.

- 1. G is online-perfect.
- 2. f(G; 2) = 2.

▶ (1)
$$\rightarrow$$
 (2): clear

Theorem

Let G be a graph. The following are equivalent.

- 1. G is online-perfect.
- 2. f(G; 2) = 2.

Theorem

Let G be a graph. The following are equivalent.

- 1. G is online-perfect.
- 2. f(G; 2) = 2.

▶ (1)
$$\rightarrow$$
 (2): clear

- (2) \rightarrow (3): Spoiler Lemma
- (3) \rightarrow (4): roughly a page of structural graph theory.

Theorem

Let G be a graph. The following are equivalent.

- 1. G is online-perfect.
- 2. f(G; 2) = 2.

• (1)
$$\rightarrow$$
 (2): clear

- (2) \rightarrow (3): Spoiler Lemma
- \blacktriangleright (3) \rightarrow (4): roughly a page of structural graph theory.
- (4) \rightarrow (1): previous corollary

Theorem

Let G be a graph. The following are equivalent.

- 1. G is online-perfect.
- 2. f(G; 2) = 2.

3. G does not have an induced copy of any of the following:

• Cor: P_4 -free graphs \subsetneq online-perfect graphs \subsetneq perfect graphs

Theorem

Let G be a graph. The following are equivalent.

- 1. G is online-perfect.
- 2. f(G; 2) = 2.

- Cor: P_4 -free graphs \subsetneq online-perfect graphs \subsetneq perfect graphs
- ► 4': G is online-perfect if and only if it the result of replacing each vertex in a bipartite graph with a P₄-free graph.

Lemma (Spoiler Lemma) Let $U \subseteq V(G)$, where $U = \{u_1, ..., u_t\}$, and suppose that:

 $u_1 \bullet \bullet \bullet \bullet \bullet u_t$

Lemma (Spoiler Lemma) Let $U \subseteq V(G)$, where $U = \{u_1, ..., u_t\}$, and suppose that:

1. There are vertices x and y such that $u_1 x y u_t$ is a path and $G[\{u_1, x, y, u_t\}]$ is bipartite, and

Lemma (Spoiler Lemma)

Let $U \subseteq V(G)$, where $U = \{u_1, \dots, u_t\}$, and suppose that:

- 1. There are vertices x and y such that $u_1 x y u_t$ is a path and $G[\{u_1, x, y, u_t\}]$ is bipartite, and
- 2. For each *i*, there is a common neighbor z_i of u_i and u_{i+1} such that $G[U \cup \{z_i\}]$ is bipartite.

Lemma (Spoiler Lemma)

Let $U \subseteq V(G)$, where $U = \{u_1, \dots, u_t\}$, and suppose that:

- 1. There are vertices x and y such that $u_1 x y u_t$ is a path and $G[\{u_1, x, y, u_t\}]$ is bipartite, and
- 2. For each *i*, there is a common neighbor z_i of u_i and u_{i+1} such that $G[U \cup \{z_i\}]$ is bipartite.

If w is even, then $f(G; w) \ge (1 + \frac{1}{2t})w$.

$$u_1$$
 u_t

Lemma (Spoiler Lemma)

Let $U \subseteq V(G)$, where $U = \{u_1, \ldots, u_t\}$, and suppose that:

- 1. There are vertices x and y such that $u_1 x y u_t$ is a path and $G[\{u_1, x, y, u_t\}]$ is bipartite, and
- 2. For each *i*, there is a common neighbor z_i of u_i and u_{i+1} such that $G[U \cup \{z_i\}]$ is bipartite.

If w is even, then $f(G; w) \ge (1 + \frac{1}{2t})w$.

Corollary

If n is odd and $n \ge 5$ and w is even, then $f(C_n; w) \ge \frac{n}{n-1}w$.

Lemma (Spoiler Lemma)

Let $U \subseteq V(G)$, where $U = \{u_1, \ldots, u_t\}$, and suppose that:

- 1. There are vertices x and y such that $u_1 x y u_t$ is a path and $G[\{u_1, x, y, u_t\}]$ is bipartite, and
- 2. For each *i*, there is a common neighbor z_i of u_i and u_{i+1} such that $G[U \cup \{z_i\}]$ is bipartite.

If w is even, then $f(G; w) \ge (1 + \frac{1}{2t})w$.

Corollary

If n is odd and $n \ge 5$ and w is even, then $f(C_n; w) \ge \frac{n}{n-1}w$.

► Apply Spoiler Lemma with t = (n-1)/2.

Lemma (Spoiler Lemma)

Let $U \subseteq V(G)$, where $U = \{u_1, \ldots, u_t\}$, and suppose that:

- 1. There are vertices x and y such that $u_1 x y u_t$ is a path and $G[\{u_1, x, y, u_t\}]$ is bipartite, and
- 2. For each *i*, there is a common neighbor z_i of u_i and u_{i+1} such that $G[U \cup \{z_i\}]$ is bipartite.

If w is even, then $f(G; w) \ge (1 + \frac{1}{2t})w$.

Corollary

If $G \in \{C_5^+, P_5^2\}$ and w is even, then $f(G; w) \geq \frac{5}{4}w$.

Lemma (Spoiler Lemma)

Let $U \subseteq V(G)$, where $U = \{u_1, \ldots, u_t\}$, and suppose that:

- 1. There are vertices x and y such that $u_1 x y u_t$ is a path and $G[\{u_1, x, y, u_t\}]$ is bipartite, and
- 2. For each *i*, there is a common neighbor z_i of u_i and u_{i+1} such that $G[U \cup \{z_i\}]$ is bipartite.

If w is even, then $f(G; w) \ge (1 + \frac{1}{2t})w$.

Corollary

If $G \in \{C_5^+, P_5^2\}$ and w is even, then $f(G; w) \geq \frac{5}{4}w$.

• Apply Spoiler Lemma with t = 2.

Lemma (Spoiler Lemma)

Let $U \subseteq V(G)$, where $U = \{u_1, \ldots, u_t\}$, and suppose that:

- 1. There are vertices x and y such that $u_1 x y u_t$ is a path and $G[\{u_1, x, y, u_t\}]$ is bipartite, and
- 2. For each *i*, there is a common neighbor z_i of u_i and u_{i+1} such that $G[U \cup \{z_i\}]$ is bipartite.

If w is even, then $f(G; w) \ge (1 + \frac{1}{2t})w$.

Corollary

If G is the bull graph and w is even, then $f(G; w) \ge \frac{7}{6}w$.

Lemma (Spoiler Lemma)

Let $U \subseteq V(G)$, where $U = \{u_1, \ldots, u_t\}$, and suppose that:

- 1. There are vertices x and y such that $u_1 x y u_t$ is a path and $G[\{u_1, x, y, u_t\}]$ is bipartite, and
- 2. For each *i*, there is a common neighbor z_i of u_i and u_{i+1} such that $G[U \cup \{z_i\}]$ is bipartite.

If w is even, then $f(G; w) \ge (1 + \frac{1}{2t})w$.

Corollary

If G is the bull graph and w is even, then $f(G; w) \ge \frac{7}{6}w$.

• Apply Spoiler Lemma with t = 3.

Proposition (Fractional Coloring Strategy) If G has a (p,q)-coloring, then $f(G;w) \le p\left\lceil \frac{w}{2q} \right\rceil$. In particular, $f(G;w) \le (\frac{1}{2}\chi_f(G) + o(1))w$.

Proposition (Fractional Coloring Strategy) If G has a (p,q)-coloring, then $f(G;w) \le p\left\lceil \frac{w}{2q} \right\rceil$. In particular, $f(G;w) \le (\frac{1}{2}\chi_f(G) + o(1))w$.

Corollary

If n is odd, then $f(C_n; w) \leq (\frac{n}{n-1} + o(1))w$.

Proposition (Fractional Coloring Strategy) If G has a (p,q)-coloring, then $f(G;w) \le p\left\lceil \frac{w}{2q} \right\rceil$. In particular, $f(G;w) \le (\frac{1}{2}\chi_f(G) + o(1))w$.

Corollary

If n is odd, then $f(C_n; w) \leq (\frac{n}{n-1} + o(1))w$.

• Apply Prop. with
$$\chi_f(C_n) = \frac{2n}{n-1}$$
.

Proposition (Fractional Coloring Strategy) If G has a (p, q)-coloring, then $f(G; w) \leq p \left\lceil \frac{w}{2q} \right\rceil$. In particular, $f(G; w) \leq (\frac{1}{2}\chi_f(G) + o(1))w$.

Corollary

If
$$G \in \{C_5^+, P_5^2\}$$
, then $f(G; w) \leq (rac{3}{2} + o(1))w$.

Proposition (Fractional Coloring Strategy) If G has a (p, q)-coloring, then $f(G; w) \leq p \left\lceil \frac{w}{2q} \right\rceil$. In particular, $f(G; w) \leq (\frac{1}{2}\chi_f(G) + o(1))w$.

Corollary

- If $G \in \{C_5^+, P_5^2\}$, then $f(G; w) \leq (\frac{3}{2} + o(1))w$.
 - Apply Prop. with $\chi_f(G) = \chi(G) = 3$.

Proposition (Fractional Coloring Strategy) If G has a (p, q)-coloring, then $f(G; w) \leq p \left\lceil \frac{w}{2q} \right\rceil$. In particular, $f(G; w) \leq (\frac{1}{2}\chi_f(G) + o(1))w$.

Corollary

If G is the bull graph and w is even, then $f(G; w) \leq (\frac{3}{2} + o(1))w$.

Proposition (Fractional Coloring Strategy) If G has a (p, q)-coloring, then $f(G; w) \leq p \left\lceil \frac{w}{2q} \right\rceil$. In particular, $f(G; w) \leq (\frac{1}{2}\chi_f(G) + o(1))w$.

Corollary

If G is the bull graph and w is even, then $f(G; w) \leq (\frac{3}{2} + o(1))w$.

• Apply Prop. with $\chi_f(G) = \chi(G) = 3$.

Theorem

A graph is online-perfect if and only if it does not have an induced copy of any of the following:

Theorem

A graph is online-perfect if and only if it does not have an induced copy of any of the following:

For odd *n* and $n \ge 5$, we have $f(C_n; w) = (\frac{n}{n-1} + o(1))w$.

Theorem

A graph is online-perfect if and only if it does not have an induced copy of any of the following:

For odd *n* and $n \ge 5$, we have $f(C_n; w) = (\frac{n}{n-1} + o(1))w$.

• $(\frac{5}{4} - o(1))w \le f(C_5^+; w) \le (\frac{3}{2} + o(1))w.$

Theorem

A graph is online-perfect if and only if it does not have an induced copy of any of the following:

For odd *n* and $n \ge 5$, we have $f(C_n; w) = (\frac{n}{n-1} + o(1))w$.

• $(\frac{5}{4} - o(1))w \le f(C_5^+; w) \le (\frac{3}{2} + o(1))w$. • Thm: $f(P_5^2; w) = (\frac{5}{4} + o(1))w$.

Theorem

A graph is online-perfect if and only if it does not have an induced copy of any of the following:

For odd n and $n \ge 5$, we have $f(C_n; w) = (\frac{n}{n-1} + o(1))w$.

- $(\frac{5}{4} o(1))w \le f(C_5^+; w) \le (\frac{3}{2} + o(1))w.$ • Thm: $f(P_5^2; w) = (\frac{5}{4} + o(1))w.$
- ► For the bull *B*: $(\frac{7}{6} o(1))w \le f(B; w) \le (\frac{3}{2} + o(1))w$.

Theorem

A graph is online-perfect if and only if it does not have an induced copy of any of the following:

- For odd n and $n \ge 5$, we have $f(C_n; w) = (\frac{n}{n-1} + o(1))w$.
- $(\frac{5}{4} o(1))w \le f(C_5^+; w) \le (\frac{3}{2} + o(1))w.$ • Thm: $f(P_5^2; w) = (\frac{5}{4} + o(1))w.$
- ► For the bull *B*: $(\frac{7}{6} o(1))w \le f(B; w) \le (\frac{3}{2} + o(1))w$.

Open Problems

Determine the asymptotics of $f(C_5^+; w)$,

Theorem

A graph is online-perfect if and only if it does not have an induced copy of any of the following:

- For odd n and $n \ge 5$, we have $f(C_n; w) = (\frac{n}{n-1} + o(1))w$.
- $(\frac{5}{4} o(1))w \le f(C_5^+; w) \le (\frac{3}{2} + o(1))w.$ • Thm: $f(P_5^2; w) = (\frac{5}{4} + o(1))w.$
- ► For the bull *B*: $(\frac{7}{6} o(1))w \le f(B; w) \le (\frac{3}{2} + o(1))w$.

Open Problems

Determine the asymptotics of $f(C_5^+; w)$, f(B; w),

Theorem

A graph is online-perfect if and only if it does not have an induced copy of any of the following:

- For odd n and $n \ge 5$, we have $f(C_n; w) = (\frac{n}{n-1} + o(1))w$.
- $(\frac{5}{4} o(1))w \le f(C_5^+; w) \le (\frac{3}{2} + o(1))w.$ • Thm: $f(P_5^2; w) = (\frac{5}{4} + o(1))w.$
- ► For the bull *B*: $(\frac{7}{6} o(1))w \le f(B; w) \le (\frac{3}{2} + o(1))w$.

Open Problems

Determine the asymptotics of $f(C_5^+; w)$, f(B; w), $f(\mathbb{G}; w)$.

Theorem

A graph is online-perfect if and only if it does not have an induced copy of any of the following:

- For odd n and $n \ge 5$, we have $f(C_n; w) = (\frac{n}{n-1} + o(1))w$.
- $(\frac{5}{4} o(1))w \le f(C_5^+; w) \le (\frac{3}{2} + o(1))w.$ • Thm: $f(P_5^2; w) = (\frac{5}{4} + o(1))w.$
- ► For the bull *B*: $(\frac{7}{6} o(1))w \le f(B; w) \le (\frac{3}{2} + o(1))w$.

Open Problems

Determine the asymptotics of $f(C_5^+; w)$, f(B; w), $f(\mathbb{G}; w)$.

Thank You.