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Circle Graphs

Definition
A circle graph is the intersection graph of chords in a circle.

Example

I They arise in sorting problems,

I questions in topological graph theory,

I and VLSI design.

I We may assume the endpoints are distinct.
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Complexity of Circle Graphs

I Spinrad (1994): there is an O(n2)-time algorithm that decides
if G is a circle graph.

I Some hard problems become easy for circle graphs:

I Gavril (1973): clique number ω(G )
I Gavril (1973): independence number α(G )
I Kloks (1996): O(n3)-time algorithm for treewidth

I Other problems remain NP-hard:

I Keil (1993): domination number
I Garey–Johnson–Miller–Papadmitriou (1980):

chromatic number χ(G ).
I Keil–Stewart (2006): clique covering number
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Chromatic Numbers of Circle Graphs

I Important for applications to sorting and VLSI.

Theorem
If G is a circle graph with ω(G ) = k, then

I χ(G ) ≤ k2 · 4k (Gyárfás (1985)).

I χ(G ) ≤ k3 · 2k (Kostochka (1988)).

I χ(G ) ≤ 50 · 2k (Kostochka–Kratochv́ıl (1997)).

Theorem (Kostochka (1988))

For infinitely many k, there is a circle graph G with ω(G ) = k and

χ(G ) ≥
(

1

2
− 1

ln k

)
k ln k.

I This exponential gap has persisted for 25 years.
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I χ(G ) ≤ k3 · 2k (Kostochka (1988)).

I χ(G ) ≤ 50 · 2k (Kostochka–Kratochv́ıl (1997)).

Theorem (Kostochka (1988))

For infinitely many k, there is a circle graph G with ω(G ) = k and

χ(G ) ≥
(

1

2
− 1

ln k

)
k ln k.

I This exponential gap has persisted for 25 years.



Chromatic Numbers of Circle Graphs

I Important for applications to sorting and VLSI.

Theorem
If G is a circle graph with ω(G ) = k, then

I χ(G ) ≤ k2 · 4k (Gyárfás (1985)).
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If G is a triangle-free circle graph, then

I χ(G ) ≤ 8 (Karapetyan (1985)).

I χ(G ) ≤ 5 (Kostochka (1988)).

Theorem (Ageev (1996))

There is a triangle-free circle graph with chromatic number 5.

I Sharp bounds are known only for triangle-free circle graphs.
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Overlap Graphs

Definition

I Two sets overlap if they have non-empty intersection and
neither is contained in the other.

I An overlap graph is a the overlap graph of a set of closed
intervals in R.

Fact
G is a circle graph if and only if G is an overlap graph.

Example
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Clean Circle Graphs

Definition

I A set of intervals is clean if it does not contain the following:

I A circle graph is clean if it is the overlap graph of a clean set
of intervals.

Theorem
If G is a clean circle graph with ω(G ) = k, then χ(G ) ≤ 2k − 1.
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A Coloring Strategy

c

I Given a family intervals X , how do we color the overlap graph?

I One natural strategy: pick a point c ∈ R.

I This partitions X into X<c , X c , and X>c .

I Color X<c ∪ X c and X c ∪ X>c inductively.

I Hope the colorings agree on X c?

I We need to control the coloring on X c .
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The Canonical Coloring
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I The endpoint order on a family of intervals puts [a, b] ≤ [c , d ]
if a ≤ c and b ≤ d .

I The canonical coloring on a family of intervals colors each
interval with its height in the endpoint order.

I Each color class is a chain by inclusion.

Proposition

When all intervals share a common point, the overlap graph is
perfect and the canonical coloring is optimal.
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x and all neighbors of x that overlap x to the right.

I A coloring is good if it is canonical on every closed
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Good Colorings of Clean Families

Theorem
If X is a clean family of intervals whose overlap graph has clique
number k, then X has a good coloring using at most 2k − 1 colors.

I Most cases need only k + 1 colors.

Theorem
There is a clean family of intervals whose overlap graph has clique
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I Good colorings are stronger than proper colorings.

I If we require only that the coloring is proper, how many colors
are needed?

I k = 2: 3 colors are sufficient and sometimes necessary.

I k = 3: 5 colors are sufficient and 4 are sometimes necessary.
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I Obtain a good coloring inductively.
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I Now y can get color 2 .



Coloring Clean Families

x

z

yy
vv

x

z

y
v

v
y

x

z
v

yy

c d

k = 3; colors: 1 2 3 4 5

I But z and v were inclusion-maximal.

I The coloring is canonical on X c and X d .

I At most 2 colors used on X c and at most 2 on X d .

I Some color is not used on X c or X d (color 5 ).

I Swap 2 and 5 on X>c .

I Now y can get color 2 .



Coloring Clean Families

x

z

yy
vv

x

z

y
v

v
y

x

z
v

yy

c d

k = 3; colors: 1 2 3 4 5

I But z and v were inclusion-maximal.

I The coloring is canonical on X c and X d .

I At most 2 colors used on X c and at most 2 on X d .

I Some color is not used on X c or X d (color 5 ).

I Swap 2 and 5 on X>c .

I Now y can get color 2 .



Coloring Clean Families

x

z

yy
vv

x

z

y
v

v
y

x

z
v

yy

c d

k = 3; colors: 1 2 3 4 5

I But z and v were inclusion-maximal.

I The coloring is canonical on X c and X d .

I At most 2 colors used on X c and at most 2 on X d .

I Some color is not used on X c or X d (color 5 ).

I Swap 2 and 5 on X>c .

I Now y can get color 2 .



Coloring Clean Families

x

z

yy
vv

x

z

y
v

v
y

x

z
v

yy

c d

k = 3; colors: 1 2 3 4 5

I But z and v were inclusion-maximal.

I The coloring is canonical on X c and X d .

I At most 2 colors used on X c and at most 2 on X d .

I Some color is not used on X c or X d (color 5 ).

I Swap 2 and 5 on X>c .

I Now y can get color 2 .



Coloring Clean Families

x

z
v

y

y

c d

k = 3; colors: 1 2 3 4 5

I But z and v were inclusion-maximal.

I The coloring is canonical on X c and X d .

I At most 2 colors used on X c and at most 2 on X d .

I Some color is not used on X c or X d (color 5 ).

I Swap 2 and 5 on X>c .

I Now y can get color 2 .



Coloring Clean Families

x

z
v

x

z
v

y

y

c d

k = 3; colors: 1 2 3 4 5

I But z and v were inclusion-maximal.

I The coloring is canonical on X c and X d .

I At most 2 colors used on X c and at most 2 on X d .

I Some color is not used on X c or X d (color 5 ).

I Swap 2 and 5 on X>c .

I Now y can get color 2 .



Coloring Clean Families

x

z
v

x

z
v

y

y

c d

k = 3; colors: 1 2 3 4 5

I But z and v were inclusion-maximal.

I The coloring is canonical on X c and X d .

I At most 2 colors used on X c and at most 2 on X d .

I Some color is not used on X c or X d (color 5 ).

I Swap 2 and 5 on X>c .

I Now y can get color 2 .



Coloring Clean Families

x

z
v

x

z
v

y

y

c d

k = 3; colors: 1 2 3 4 5

I But z and v were inclusion-maximal.

I The coloring is canonical on X c and X d .

I At most 2 colors used on X c and at most 2 on X d .

I Some color is not used on X c or X d (color 5 ).

I Swap 2 and 5 on X>c .

I Now y can get color 2 .



Segments in Circle Graphs
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If X is a family of intervals whose overlap graph has clique number
k, then the overlap graph of segments of X has clique number
k − 1.
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I Let X be a family of intervals.

I Let Y be the set of intervals contained in segments of X .

I Let Z = X − Y .

I Since Z is clean, we can color it with few colors.

I When the clique number is small, the segments are highly
structured.

I Using this and other tricks, we color Y .
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Chromatic Numbers of K4-free Circle Graphs

I When G is a K4-free circle graph, the Kostochka bound yields
χ(G ) ≤ 120.

Theorem
If G is a K4-free circle graph, then χ(G ) ≤ 38.

I What is the maximum possible chromatic number of a K4-free
circle graph?

I No non-trivial lower bounds known.

I What is the maximum possible chromatic number of a clean
circle graph with clique number k?

Thank You.
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