Coloring Clean and K_4 -free Circle Graphs

Kevin G. Milans (milans@math.sc.edu)

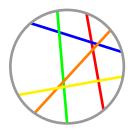
Joint with A.V. Kostochka

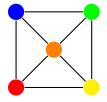
University of South Carolina

Atlanta Lecture Series in Discrete Mathematics: III
Atlanta, GA
2011 April 16

Definition

A circle graph is the intersection graph of chords in a circle.

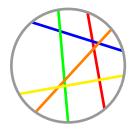


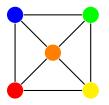


Definition

A circle graph is the intersection graph of chords in a circle.

Example

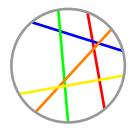


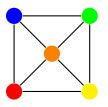


They arise in sorting problems,

Definition

A circle graph is the intersection graph of chords in a circle.

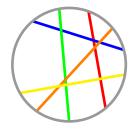


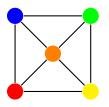


- They arise in sorting problems,
- questions in topological graph theory,

Definition

A circle graph is the intersection graph of chords in a circle.

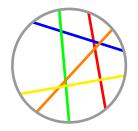


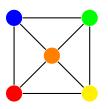


- They arise in sorting problems,
- questions in topological graph theory,
- ▶ and VLSI design.

Definition

A circle graph is the intersection graph of chords in a circle.





- They arise in sorting problems,
- questions in topological graph theory,
- and VLSI design.
- ▶ We may assume the endpoints are distinct.

▶ Spinrad (1994): there is an $O(n^2)$ -time algorithm that decides if G is a circle graph.

- ▶ Spinrad (1994): there is an $O(n^2)$ -time algorithm that decides if G is a circle graph.
- ▶ Some hard problems become easy for circle graphs:

- ▶ Spinrad (1994): there is an $O(n^2)$ -time algorithm that decides if G is a circle graph.
- Some hard problems become easy for circle graphs:
 - ▶ Gavril (1973): clique number $\omega(G)$

- ▶ Spinrad (1994): there is an $O(n^2)$ -time algorithm that decides if G is a circle graph.
- Some hard problems become easy for circle graphs:
 - ▶ Gavril (1973): clique number $\omega(G)$
 - ▶ Gavril (1973): independence number $\alpha(G)$

- ▶ Spinrad (1994): there is an $O(n^2)$ -time algorithm that decides if G is a circle graph.
- ▶ Some hard problems become easy for circle graphs:
 - ▶ Gavril (1973): clique number $\omega(G)$
 - ▶ Gavril (1973): independence number $\alpha(G)$
 - ▶ Kloks (1996): $O(n^3)$ -time algorithm for treewidth

- ▶ Spinrad (1994): there is an $O(n^2)$ -time algorithm that decides if G is a circle graph.
- Some hard problems become easy for circle graphs:
 - ▶ Gavril (1973): clique number $\omega(G)$
 - ▶ Gavril (1973): independence number $\alpha(G)$
 - ▶ Kloks (1996): $O(n^3)$ -time algorithm for treewidth
- Other problems remain NP-hard:

- ▶ Spinrad (1994): there is an $O(n^2)$ -time algorithm that decides if G is a circle graph.
- Some hard problems become easy for circle graphs:
 - ▶ Gavril (1973): clique number $\omega(G)$
 - ▶ Gavril (1973): independence number $\alpha(G)$
 - ▶ Kloks (1996): $O(n^3)$ -time algorithm for treewidth
- Other problems remain NP-hard:
 - ▶ Keil (1993): domination number

- ▶ Spinrad (1994): there is an $O(n^2)$ -time algorithm that decides if G is a circle graph.
- Some hard problems become easy for circle graphs:
 - ▶ Gavril (1973): clique number $\omega(G)$
 - ▶ Gavril (1973): independence number $\alpha(G)$
 - ▶ Kloks (1996): $O(n^3)$ -time algorithm for treewidth
- Other problems remain NP-hard:
 - ▶ Keil (1993): domination number
 - ▶ Garey–Johnson–Miller–Papadmitriou (1980): chromatic number $\chi(G)$.

- ▶ Spinrad (1994): there is an $O(n^2)$ -time algorithm that decides if G is a circle graph.
- Some hard problems become easy for circle graphs:
 - ▶ Gavril (1973): clique number $\omega(G)$
 - ▶ Gavril (1973): independence number $\alpha(G)$
 - ▶ Kloks (1996): $O(n^3)$ -time algorithm for treewidth
- Other problems remain NP-hard:
 - ▶ Keil (1993): domination number
 - ► Garey–Johnson–Miller–Papadmitriou (1980): chromatic number $\chi(G)$.
 - ► Keil-Stewart (2006): clique covering number

Important for applications to sorting and VLSI.

Important for applications to sorting and VLSI.

Theorem

Important for applications to sorting and VLSI.

Theorem

$$\lambda(G) \le k^2 \cdot 4^k \text{ (Gyárfás (1985))}.$$

Important for applications to sorting and VLSI.

Theorem

- $\chi(G) \le k^2 \cdot 4^k \text{ (Gyárfás (1985))}.$
- $\chi(G) \leq k^3 \cdot 2^k$ (Kostochka (1988)).

Important for applications to sorting and VLSI.

Theorem

- $\chi(G) \le k^2 \cdot 4^k \text{ (Gyárfás (1985))}.$
- $\chi(G) \leq k^3 \cdot 2^k$ (Kostochka (1988)).
- ▶ $\chi(G) \leq 50 \cdot 2^k$ (Kostochka–Kratochvíl (1997)).

▶ Important for applications to sorting and VLSI.

Theorem

If G is a circle graph with $\omega(G) = k$, then

- $\lambda(G) \leq k^2 \cdot 4^k$ (Gyárfás (1985)).
- $\chi(G) \leq k^3 \cdot 2^k$ (Kostochka (1988)).
- ▶ $\chi(G) \leq 50 \cdot 2^k$ (Kostochka–Kratochvíl (1997)).

Theorem (Kostochka (1988))

For infinitely many k, there is a circle graph G with $\omega(G)=k$ and

$$\chi(G) \ge \left(\frac{1}{2} - \frac{1}{\ln k}\right) k \ln k.$$

Important for applications to sorting and VLSI.

Theorem

If G is a circle graph with $\omega(G) = k$, then

- $\chi(G) \le k^2 \cdot 4^k$ (Gyárfás (1985)).
- $\chi(G) \leq k^3 \cdot 2^k$ (Kostochka (1988)).
- ▶ $\chi(G) \leq 50 \cdot 2^k$ (Kostochka–Kratochvíl (1997)).

Theorem (Kostochka (1988))

For infinitely many k, there is a circle graph G with $\omega(G)=k$ and

$$\chi(G) \geq \left(\frac{1}{2} - \frac{1}{\ln k}\right) k \ln k.$$

▶ This exponential gap has persisted for 25 years.

Theorem

If G is a triangle-free circle graph, then

Theorem

If G is a triangle-free circle graph, then

▶ $\chi(G) \le 8$ (Karapetyan (1985)).

Theorem

If G is a triangle-free circle graph, then

- ▶ $\chi(G) \le 8$ (Karapetyan (1985)).
- $\chi(G) \le 5$ (Kostochka (1988)).

Theorem

If G is a triangle-free circle graph, then

- ▶ $\chi(G) \le 8$ (Karapetyan (1985)).
- $\chi(G) \le 5$ (Kostochka (1988)).

Theorem (Ageev (1996))

There is a triangle-free circle graph with chromatic number 5.

Theorem

If G is a triangle-free circle graph, then

- $\chi(G) \le 8$ (Karapetyan (1985)).
- $\chi(G) \le 5$ (Kostochka (1988)).

Theorem (Ageev (1996))

There is a triangle-free circle graph with chromatic number 5.

Sharp bounds are known only for triangle-free circle graphs.

Definition

► Two sets overlap if they have non-empty intersection and neither is contained in the other.

Definition

- ► Two sets overlap if they have non-empty intersection and neither is contained in the other.
- An overlap graph is a the overlap graph of a set of closed intervals in \mathbb{R} .

Definition

- ► Two sets overlap if they have non-empty intersection and neither is contained in the other.
- An overlap graph is a the overlap graph of a set of closed intervals in \mathbb{R} .

Fact

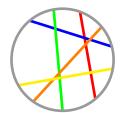
G is a circle graph if and only if G is an overlap graph.

Definition

- ► Two sets overlap if they have non-empty intersection and neither is contained in the other.
- ► An overlap graph is a the overlap graph of a set of closed intervals in ℝ.

Fact

G is a circle graph if and only if G is an overlap graph.

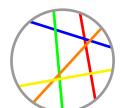


Definition

- ► Two sets overlap if they have non-empty intersection and neither is contained in the other.
- ► An overlap graph is a the overlap graph of a set of closed intervals in ℝ.

Fact

G is a circle graph if and only if G is an overlap graph.

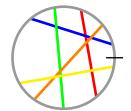


Definition

- ► Two sets overlap if they have non-empty intersection and neither is contained in the other.
- An overlap graph is a the overlap graph of a set of closed intervals in \mathbb{R} .

Fact

G is a circle graph if and only if G is an overlap graph.

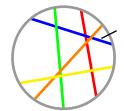


Definition

- ► Two sets overlap if they have non-empty intersection and neither is contained in the other.
- ► An overlap graph is a the overlap graph of a set of closed intervals in ℝ.

Fact

G is a circle graph if and only if G is an overlap graph.



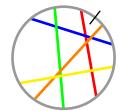


Definition

- ► Two sets overlap if they have non-empty intersection and neither is contained in the other.
- ► An overlap graph is a the overlap graph of a set of closed intervals in ℝ.

Fact

G is a circle graph if and only if G is an overlap graph.

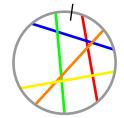


Definition

- ► Two sets overlap if they have non-empty intersection and neither is contained in the other.
- ► An overlap graph is a the overlap graph of a set of closed intervals in ℝ.

Fact

G is a circle graph if and only if G is an overlap graph.

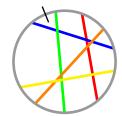


Definition

- ► Two sets overlap if they have non-empty intersection and neither is contained in the other.
- ► An overlap graph is a the overlap graph of a set of closed intervals in ℝ.

Fact

G is a circle graph if and only if G is an overlap graph.

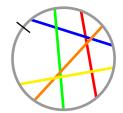


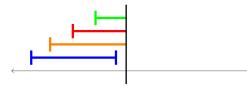
Definition

- ► Two sets overlap if they have non-empty intersection and neither is contained in the other.
- ► An overlap graph is a the overlap graph of a set of closed intervals in ℝ.

Fact

G is a circle graph if and only if G is an overlap graph.



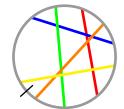


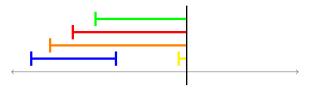
Definition

- ► Two sets overlap if they have non-empty intersection and neither is contained in the other.
- ► An overlap graph is a the overlap graph of a set of closed intervals in ℝ.

Fact

G is a circle graph if and only if G is an overlap graph.



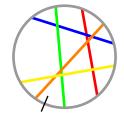


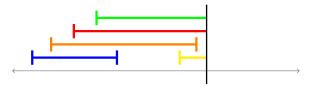
Definition

- ► Two sets overlap if they have non-empty intersection and neither is contained in the other.
- An overlap graph is a the overlap graph of a set of closed intervals in \mathbb{R} .

Fact

G is a circle graph if and only if G is an overlap graph.



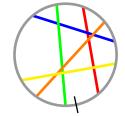


Definition

- ► Two sets overlap if they have non-empty intersection and neither is contained in the other.
- ► An overlap graph is a the overlap graph of a set of closed intervals in ℝ.

Fact

G is a circle graph if and only if G is an overlap graph.



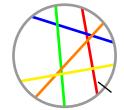


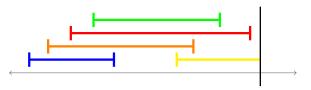
Definition

- ► Two sets overlap if they have non-empty intersection and neither is contained in the other.
- ► An overlap graph is a the overlap graph of a set of closed intervals in ℝ.

Fact

G is a circle graph if and only if G is an overlap graph.



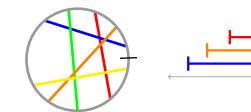


Definition

- ► Two sets overlap if they have non-empty intersection and neither is contained in the other.
- ► An overlap graph is a the overlap graph of a set of closed intervals in ℝ.

Fact

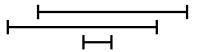
G is a circle graph if and only if G is an overlap graph.



Clean Circle Graphs

Definition

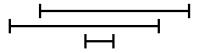
▶ A set of intervals is clean if it does not contain the following:



Clean Circle Graphs

Definition

▶ A set of intervals is clean if it does not contain the following:

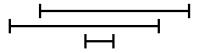


► A circle graph is clean if it is the overlap graph of a clean set of intervals.

Clean Circle Graphs

Definition

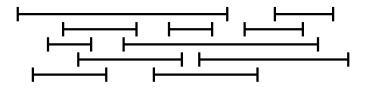
▶ A set of intervals is clean if it does not contain the following:



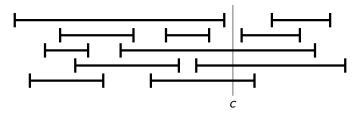
► A circle graph is clean if it is the overlap graph of a clean set of intervals.

Theorem

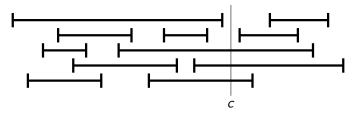
If G is a clean circle graph with $\omega(G) = k$, then $\chi(G) \le 2k - 1$.



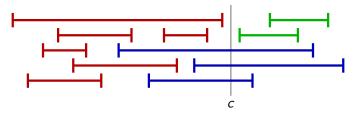
▶ Given a family intervals X, how do we color the overlap graph?



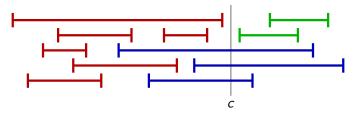
- ▶ Given a family intervals X, how do we color the overlap graph?
- ▶ One natural strategy: pick a point $c \in \mathbb{R}$.



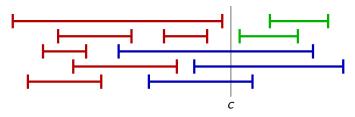
- \triangleright Given a family intervals X, how do we color the overlap graph?
- ▶ One natural strategy: pick a point $c \in \mathbb{R}$.
- ▶ This partitions X into $X^{< c}$, X^c , and $X^{> c}$.



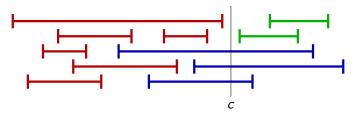
- ▶ Given a family intervals X, how do we color the overlap graph?
- ▶ One natural strategy: pick a point $c \in \mathbb{R}$.
- ▶ This partitions X into $X^{< c}$, X^c , and $X^{> c}$.



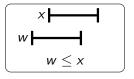
- ▶ Given a family intervals X, how do we color the overlap graph?
- ▶ One natural strategy: pick a point $c \in \mathbb{R}$.
- ▶ This partitions X into $X^{< c}$, X^c , and $X^{> c}$.
- ▶ Color $X^{< c} \cup X^c$ and $X^c \cup X^{> c}$ inductively.

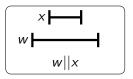


- ▶ Given a family intervals X, how do we color the overlap graph?
- ▶ One natural strategy: pick a point $c \in \mathbb{R}$.
- ▶ This partitions X into $X^{< c}$, X^c , and $X^{> c}$.
- ▶ Color $X^{< c} \cup X^c$ and $X^c \cup X^{> c}$ inductively.
- ▶ Hope the colorings agree on X^c?

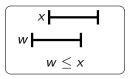


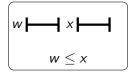
- ▶ Given a family intervals X, how do we color the overlap graph?
- ▶ One natural strategy: pick a point $c \in \mathbb{R}$.
- ▶ This partitions X into $X^{< c}$, X^c , and $X^{> c}$.
- ▶ Color $X^{< c} \cup X^c$ and $X^c \cup X^{> c}$ inductively.
- ▶ Hope the colorings agree on X^c?
- ▶ We need to control the coloring on X^c.

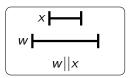




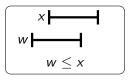
▶ The endpoint order on a family of intervals puts $[a, b] \le [c, d]$ if $a \le c$ and $b \le d$.

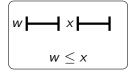


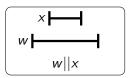




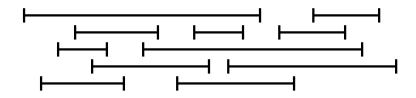
- ▶ The endpoint order on a family of intervals puts $[a, b] \le [c, d]$ if $a \le c$ and $b \le d$.
- ► The canonical coloring on a family of intervals colors each interval with its height in the endpoint order.



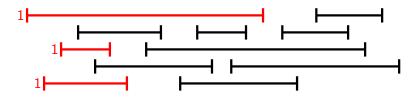




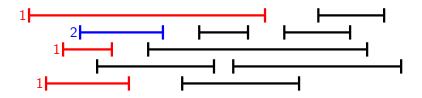
- ► The endpoint order on a family of intervals puts $[a, b] \le [c, d]$ if $a \le c$ and $b \le d$.
- ► The canonical coloring on a family of intervals colors each interval with its height in the endpoint order.
- Each color class is a chain by inclusion.



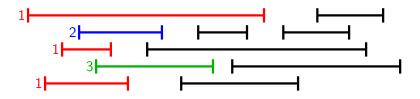
- ► The endpoint order on a family of intervals puts $[a, b] \le [c, d]$ if $a \le c$ and $b \le d$.
- ► The canonical coloring on a family of intervals colors each interval with its height in the endpoint order.
- Each color class is a chain by inclusion.



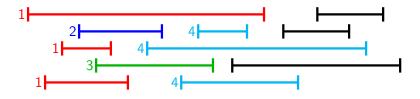
- ► The endpoint order on a family of intervals puts $[a, b] \le [c, d]$ if $a \le c$ and $b \le d$.
- ► The canonical coloring on a family of intervals colors each interval with its height in the endpoint order.
- Each color class is a chain by inclusion.



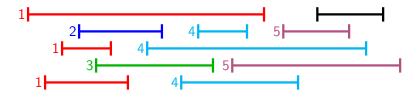
- ▶ The endpoint order on a family of intervals puts $[a, b] \le [c, d]$ if $a \le c$ and $b \le d$.
- ► The canonical coloring on a family of intervals colors each interval with its height in the endpoint order.
- Each color class is a chain by inclusion.



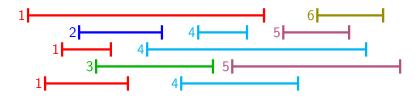
- ▶ The endpoint order on a family of intervals puts $[a, b] \le [c, d]$ if $a \le c$ and $b \le d$.
- ► The canonical coloring on a family of intervals colors each interval with its height in the endpoint order.
- Each color class is a chain by inclusion.



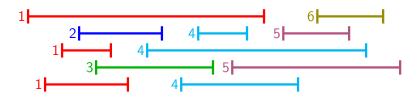
- ▶ The endpoint order on a family of intervals puts $[a, b] \le [c, d]$ if $a \le c$ and $b \le d$.
- ► The canonical coloring on a family of intervals colors each interval with its height in the endpoint order.
- Each color class is a chain by inclusion.



- ► The endpoint order on a family of intervals puts $[a, b] \le [c, d]$ if $a \le c$ and $b \le d$.
- ► The canonical coloring on a family of intervals colors each interval with its height in the endpoint order.
- Each color class is a chain by inclusion.

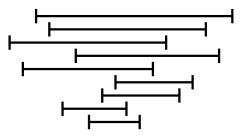


- ► The endpoint order on a family of intervals puts $[a, b] \le [c, d]$ if $a \le c$ and $b \le d$.
- ► The canonical coloring on a family of intervals colors each interval with its height in the endpoint order.
- Each color class is a chain by inclusion.



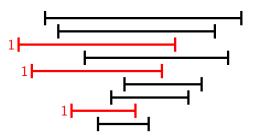
- ▶ The endpoint order on a family of intervals puts $[a, b] \le [c, d]$ if $a \le c$ and $b \le d$.
- ► The canonical coloring on a family of intervals colors each interval with its height in the endpoint order.
- Each color class is a chain by inclusion.

Proposition



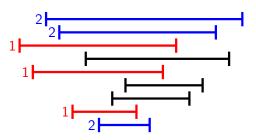
- ► The endpoint order on a family of intervals puts $[a, b] \le [c, d]$ if $a \le c$ and $b \le d$.
- ► The canonical coloring on a family of intervals colors each interval with its height in the endpoint order.
- Each color class is a chain by inclusion.

Proposition



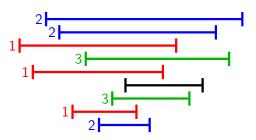
- ► The endpoint order on a family of intervals puts $[a, b] \le [c, d]$ if $a \le c$ and $b \le d$.
- ► The canonical coloring on a family of intervals colors each interval with its height in the endpoint order.
- ► Each color class is a chain by inclusion.

Proposition



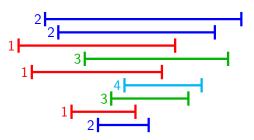
- ▶ The endpoint order on a family of intervals puts $[a, b] \le [c, d]$ if $a \le c$ and $b \le d$.
- ► The canonical coloring on a family of intervals colors each interval with its height in the endpoint order.
- Each color class is a chain by inclusion.

Proposition



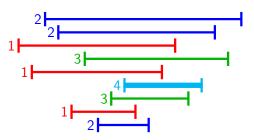
- ▶ The endpoint order on a family of intervals puts $[a, b] \le [c, d]$ if $a \le c$ and $b \le d$.
- ► The canonical coloring on a family of intervals colors each interval with its height in the endpoint order.
- Each color class is a chain by inclusion.

Proposition



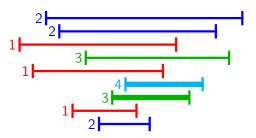
- ► The endpoint order on a family of intervals puts $[a, b] \le [c, d]$ if $a \le c$ and $b \le d$.
- ► The canonical coloring on a family of intervals colors each interval with its height in the endpoint order.
- ► Each color class is a chain by inclusion.

Proposition



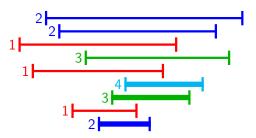
- ▶ The endpoint order on a family of intervals puts $[a, b] \le [c, d]$ if $a \le c$ and $b \le d$.
- ► The canonical coloring on a family of intervals colors each interval with its height in the endpoint order.
- Each color class is a chain by inclusion.

Proposition



- ▶ The endpoint order on a family of intervals puts $[a, b] \le [c, d]$ if $a \le c$ and $b \le d$.
- ► The canonical coloring on a family of intervals colors each interval with its height in the endpoint order.
- Each color class is a chain by inclusion.

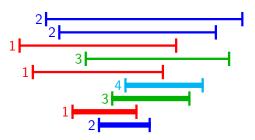
Proposition



- ► The endpoint order on a family of intervals puts $[a, b] \le [c, d]$ if $a \le c$ and $b \le d$.
- ► The canonical coloring on a family of intervals colors each interval with its height in the endpoint order.
- Each color class is a chain by inclusion.

Proposition

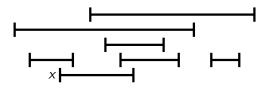
The Canonical Coloring



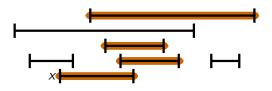
- ► The endpoint order on a family of intervals puts $[a, b] \le [c, d]$ if $a \le c$ and $b \le d$.
- ► The canonical coloring on a family of intervals colors each interval with its height in the endpoint order.
- Each color class is a chain by inclusion.

Proposition

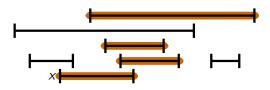
When all intervals share a common point, the overlap graph is perfect and the canonical coloring is optimal.



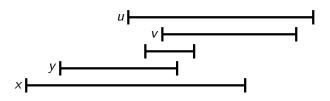
► The closed right-neighborhood of x, denoted R[x], consists of x and all neighbors of x that overlap x to the right.



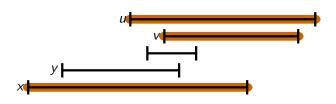
► The closed right-neighborhood of x, denoted R[x], consists of x and all neighbors of x that overlap x to the right.



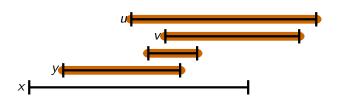
- ► The closed right-neighborhood of x, denoted R[x], consists of x and all neighbors of x that overlap x to the right.
- ► A coloring is good if it is canonical on every closed right-neighborhood.



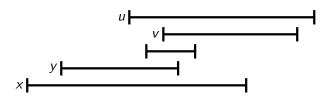
- ► The closed right-neighborhood of x, denoted R[x], consists of x and all neighbors of x that overlap x to the right.
- ► A coloring is good if it is canonical on every closed right-neighborhood.
- Not all families of intervals have good colorings.



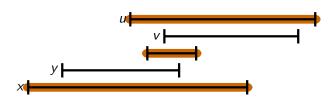
- ► The closed right-neighborhood of x, denoted R[x], consists of x and all neighbors of x that overlap x to the right.
- ► A coloring is good if it is canonical on every closed right-neighborhood.
- ▶ Not all families of intervals have good colorings.
 - ▶ Canonical on R[x]: f(u) = f(v)



- ► The closed right-neighborhood of x, denoted R[x], consists of x and all neighbors of x that overlap x to the right.
- ► A coloring is good if it is canonical on every closed right-neighborhood.
- Not all families of intervals have good colorings.
 - ▶ Canonical on R[x]: f(u) = f(v)
 - ▶ Canonical on R[y]: $f(u) \neq f(v)$



- ► The closed right-neighborhood of x, denoted R[x], consists of x and all neighbors of x that overlap x to the right.
- ► A coloring is good if it is canonical on every closed right-neighborhood.
- ▶ Not all families of intervals have good colorings.
 - ▶ Canonical on R[x]: f(u) = f(v)
 - ▶ Canonical on R[y]: $f(u) \neq f(v)$



- ► The closed right-neighborhood of x, denoted R[x], consists of x and all neighbors of x that overlap x to the right.
- ► A coloring is good if it is canonical on every closed right-neighborhood.
- Not all families of intervals have good colorings.
 - ▶ Canonical on R[x]: f(u) = f(v)
 - ▶ Canonical on R[y]: $f(u) \neq f(v)$

Theorem

If X is a clean family of intervals whose overlap graph has clique number k, then X has a good coloring using at most 2k-1 colors.

Theorem

If X is a clean family of intervals whose overlap graph has clique number k, then X has a good coloring using at most 2k-1 colors.

▶ Most cases need only k + 1 colors.

Theorem

If X is a clean family of intervals whose overlap graph has clique number k, then X has a good coloring using at most 2k-1 colors.

▶ Most cases need only k + 1 colors.

Theorem

Theorem

If X is a clean family of intervals whose overlap graph has clique number k, then X has a good coloring using at most 2k-1 colors.

▶ Most cases need only k + 1 colors.

Theorem

There is a clean family of intervals whose overlap graph has clique number k for which every good coloring uses at least 2k-1 colors.

Good colorings are stronger than proper colorings.

Theorem

If X is a clean family of intervals whose overlap graph has clique number k, then X has a good coloring using at most 2k-1 colors.

▶ Most cases need only k + 1 colors.

Theorem

- Good colorings are stronger than proper colorings.
- ▶ If we require only that the coloring is proper, how many colors are needed?

Theorem

If X is a clean family of intervals whose overlap graph has clique number k, then X has a good coloring using at most 2k-1 colors.

▶ Most cases need only k + 1 colors.

Theorem

- Good colorings are stronger than proper colorings.
- ▶ If we require only that the coloring is proper, how many colors are needed?
- k = 2: 3 colors are sufficient and sometimes necessary.

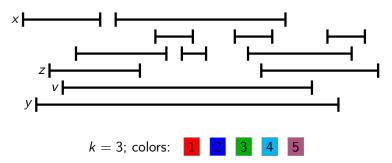
Theorem

If X is a clean family of intervals whose overlap graph has clique number k, then X has a good coloring using at most 2k-1 colors.

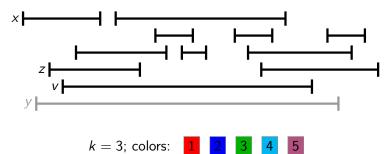
▶ Most cases need only k + 1 colors.

Theorem

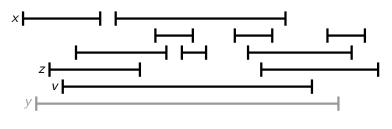
- Good colorings are stronger than proper colorings.
- ▶ If we require only that the coloring is proper, how many colors are needed?
- k = 2: 3 colors are sufficient and sometimes necessary.
- k = 3: 5 colors are sufficient and 4 are sometimes necessary.



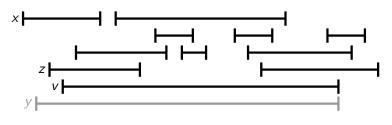
Find appropriate intervals x, y, z, and v. Delete y.



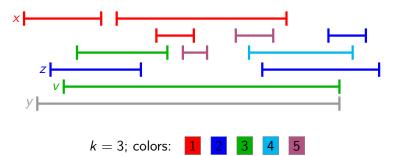
Find appropriate intervals x, y, z, and v. Delete y.



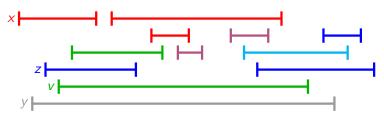
- k = 3; colors: 1 2 3 4 5
- ► Find appropriate intervals x, y, z, and v. Delete y.
- ▶ With y removed, z and v are inclusion-maximal.



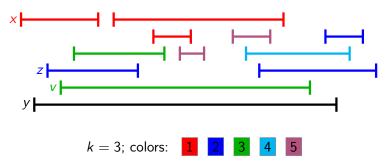
- k = 3; colors: 1 2 3 4 5
- ► Find appropriate intervals x, y, z, and v. Delete y.
- ▶ With y removed, z and v are inclusion-maximal.
- Extend v.



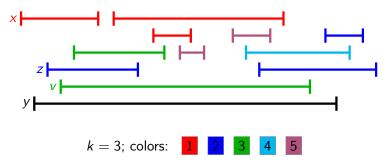
- ► Find appropriate intervals x, y, z, and v. Delete y.
- ▶ With y removed, z and v are inclusion-maximal.
- Extend v.
- Obtain a good coloring inductively.



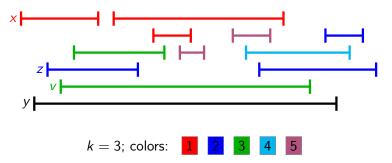
- k = 3; colors: 1 2 3 4 5
- Find appropriate intervals x, y, z, and v. Delete y.
- ▶ With y removed, z and v are inclusion-maximal.
- Extend v.
- Obtain a good coloring inductively.
- Restore v.



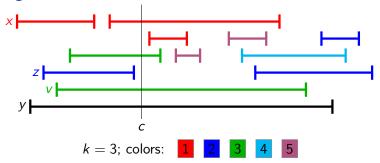
- Find appropriate intervals x, y, z, and v. Delete y.
- \blacktriangleright With y removed, z and v are inclusion-maximal.
- Extend v.
- Obtain a good coloring inductively.
- Restore v.
- ▶ Restore *y*.



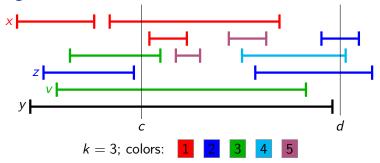
► How should we color *y*?



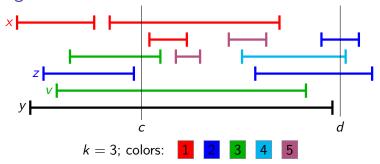
- ► How should we color *y*?
- ightharpoonup R[x] canonical: y must get same color as z (color 2).



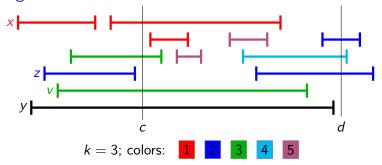
- ► How should we color *y*?
- ightharpoonup R[x] canonical: y must get same color as z (color 2).
- ▶ Let c be a point just to the right of z.



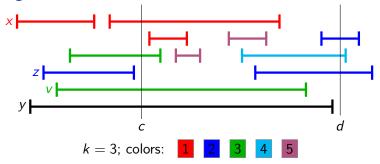
- ► How should we color *y*?
- ightharpoonup R[x] canonical: y must get same color as z (color 2).
- Let c be a point just to the right of z.
- ▶ Let *d* be a point just to the right of *y*.



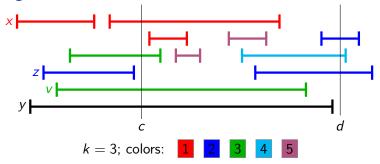
▶ But z and v were inclusion-maximal.



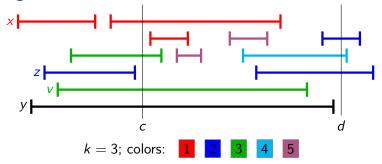
- ▶ But z and v were inclusion-maximal.
- ▶ The coloring is canonical on X^c and X^d .



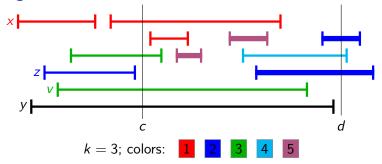
- ▶ But z and v were inclusion-maximal.
- ▶ The coloring is canonical on X^c and X^d .
- At most 2 colors used on X^c and at most 2 on X^d .



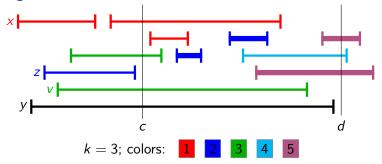
- ▶ But z and v were inclusion-maximal.
- ▶ The coloring is canonical on X^c and X^d .
- At most 2 colors used on X^c and at most 2 on X^d .
- Some color is not used on X^c or X^d (color 5).



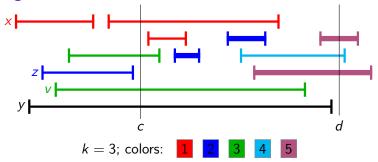
- ▶ But z and v were inclusion-maximal.
- ▶ The coloring is canonical on X^c and X^d .
- At most 2 colors used on X^c and at most 2 on X^d .
- ▶ Some color is not used on X^c or X^d (color 5).
- ► Swap $\frac{2}{}$ and $\frac{5}{}$ on $X^{>c}$.



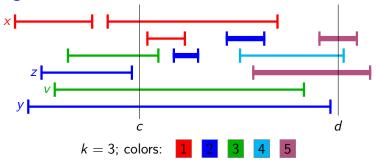
- ▶ But z and v were inclusion-maximal.
- ▶ The coloring is canonical on X^c and X^d .
- At most 2 colors used on X^c and at most 2 on X^d .
- Some color is not used on X^c or X^d (color 5).
- Swap 2 and 5 on $X^{>c}$.



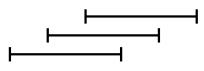
- ▶ But z and v were inclusion-maximal.
- ▶ The coloring is canonical on X^c and X^d .
- At most 2 colors used on X^c and at most 2 on X^d .
- Some color is not used on X^c or X^d (color 5).
- Swap 2 and 5 on $X^{>c}$.



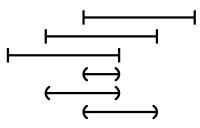
- ▶ But z and v were inclusion-maximal.
- ▶ The coloring is canonical on X^c and X^d .
- At most 2 colors used on X^c and at most 2 on X^d .
- Some color is not used on X^c or X^d (color 5).
- ▶ Swap $\frac{2}{2}$ and $\frac{5}{2}$ on $X^{>c}$.
- Now y can get color $\frac{2}{2}$.



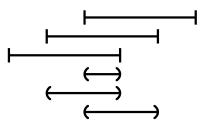
- ▶ But z and v were inclusion-maximal.
- ▶ The coloring is canonical on X^c and X^d .
- At most 2 colors used on X^c and at most 2 on X^d .
- Some color is not used on X^c or X^d (color 5).
- Swap 2 and 5 on $X^{>c}$.
- Now y can get color $\frac{2}{2}$.



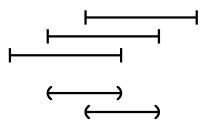
▶ A center of *X* is the intersection of two overlapping intervals.



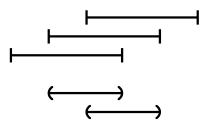
▶ A center of *X* is the intersection of two overlapping intervals.



- ▶ A center of *X* is the intersection of two overlapping intervals.
- ▶ A segment of *X* is an inclusion-maximal center.



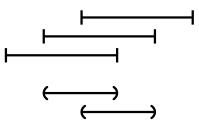
- ▶ A center of *X* is the intersection of two overlapping intervals.
- ▶ A segment of *X* is an inclusion-maximal center.



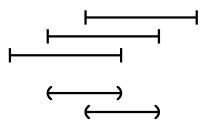
- ▶ A center of *X* is the intersection of two overlapping intervals.
- ▶ A segment of *X* is an inclusion-maximal center.

Lemma

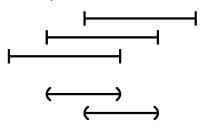
If X is a family of intervals whose overlap graph has clique number k, then the overlap graph of segments of X has clique number k-1.



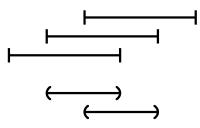
▶ Let *X* be a family of intervals.



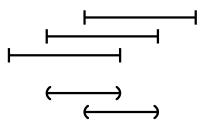
- ▶ Let *X* be a family of intervals.
- ▶ Let *Y* be the set of intervals contained in segments of *X*.



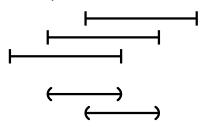
- ▶ Let *X* be a family of intervals.
- ▶ Let *Y* be the set of intervals contained in segments of *X*.
- ▶ Let Z = X Y.



- Let X be a family of intervals.
- ▶ Let *Y* be the set of intervals contained in segments of *X*.
- ▶ Let Z = X Y.
- ▶ Since Z is clean, we can color it with few colors.



- ▶ Let *X* be a family of intervals.
- ▶ Let *Y* be the set of intervals contained in segments of *X*.
- ▶ Let Z = X Y.
- ▶ Since *Z* is clean, we can color it with few colors.
- When the clique number is small, the segments are highly structured.



- ▶ Let *X* be a family of intervals.
- ▶ Let *Y* be the set of intervals contained in segments of *X*.
- ▶ Let Z = X Y.
- ▶ Since *Z* is clean, we can color it with few colors.
- When the clique number is small, the segments are highly structured.
- ▶ Using this and other tricks, we color Y.

▶ When *G* is a K_4 -free circle graph, the Kostochka bound yields $\chi(G) \leq 120$.

▶ When G is a K_4 -free circle graph, the Kostochka bound yields $\chi(G) \leq 120$.

Theorem

If G is a K_4 -free circle graph, then $\chi(G) \leq 38$.

▶ When G is a K_4 -free circle graph, the Kostochka bound yields $\chi(G) \leq 120$.

Theorem

If G is a K_4 -free circle graph, then $\chi(G) \leq 38$.

▶ What is the maximum possible chromatic number of a K_4 -free circle graph?

▶ When G is a K_4 -free circle graph, the Kostochka bound yields $\chi(G) \leq 120$.

Theorem

If G is a K_4 -free circle graph, then $\chi(G) \leq 38$.

- ▶ What is the maximum possible chromatic number of a K_4 -free circle graph?
- No non-trivial lower bounds known.

▶ When G is a K_4 -free circle graph, the Kostochka bound yields $\chi(G) \leq 120$.

Theorem

If G is a K_4 -free circle graph, then $\chi(G) \leq 38$.

- ▶ What is the maximum possible chromatic number of a K_4 -free circle graph?
- ▶ No non-trivial lower bounds known.
- ▶ What is the maximum possible chromatic number of a clean circle graph with clique number *k*?

▶ When G is a K_4 -free circle graph, the Kostochka bound yields $\chi(G) \leq 120$.

Theorem

If G is a K_4 -free circle graph, then $\chi(G) \leq 38$.

- ▶ What is the maximum possible chromatic number of a K_4 -free circle graph?
- No non-trivial lower bounds known.
- ▶ What is the maximum possible chromatic number of a clean circle graph with clique number *k*?

Thank You.