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Abstract. A circle graph is the intersection graph of chords drawn in a circle. The best known
general upper bound on the chromatic number of circle graphs with clique number k is 50 · 2k. We
prove a stronger bound of 2k − 1 for graphs in a simpler subclass of circle graphs, so called clean

graphs. Based on this result we prove that the chromatic number of every circle graph with clique
number at most 3 is at most 38.

1. Introduction

Recall that the chromatic number of a graph G, denoted χ(G), is the minimum size of a partition
of V (G) into independent sets. A clique is a set of pairwise adjacent vertices, and the clique number

of G, denoted ω(G), is the maximum size of a clique in G.
Vertices in a clique must receive distinct colors, so χ(G) ≥ ω(G) for every graph G. In general,

χ(G) cannot be bounded above by any function of ω(G). Indeed, there are triangle-free graphs with
arbitrarily large chromatic number [18, 4].

When graphs have additional structure, it may be possible to bound the chromatic number in
terms of the clique number. A family of graphs G is χ-bounded if there is a function f such that
χ(G) ≤ f(ω(G)) for each G ∈ G. Some families of intersection graphs of geometric objects have
been shown to be χ-bounded (see e.g. [8, 12, 11]). Recall that the intersection graph of a family of
sets has a vertex for each set in the family, with vertices adjacent if and only if the corresponding
sets intersect. Possibly the simplest example is the class I of interval graphs, i.e., the class of
intersection graphs of intervals in a line. Interval graphs even are perfect graphs, i.e., χ(G) = ω(G)
for every interval graph G.

Another interesting family is the family C of circle graphs, that is, the intersection graphs of
families of chords of a circle. This family is more complicated than I: Although the problem
of recognition of a circle graph is polynomial (Bouchet [2]) and so are the problems of �nding
maximum cliques and maximum independent sets in circle graphs (Gavril [7, 8]), the problems of
�nding the chromatic number (Garey et al [6]) and clique covering number (Keil and Stewart [14])
are NP-complete. Circle graphs naturally arise in a number of combinatorial problems: from sorting
problems to studying planar graphs to continuous fractions (see, e.g. [8, 3]). In particular, Even
and Itai showed [5, 8] that for a given permutation P of {1, 2, . . . , n}, the problem of �nding the
minimum number of stacks needed to obtain the identity permutation from P reduces to �nding
the chromatic number of a corresponding circle graph.

A graph G is a circle graph if and only if it is an overlap graph: the vertices of such a graph
are closed intervals in the real line and two intervals are adjacent if they overlap, that is, intersect
and neither of them contains the other. To see this, observe that given a family of chords on a
circle representing a circle graph, cutting the circle at a point and unrolling gives the corresponding
overlap representation for the same graph.
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The above-mentioned complexity results on circle graphs make interesting upper bounds on the
chromatic number of circle graphs in terms of their clique number, especially if the proofs yield
polynomial time algorithms for corresponding colorings. There was a series of results in this direc-
tion. Karapetyan [13] showed that χ(G) ≤ 8 when G is a triangle-free circle graph. Gyárfás [9, 10]
proved that χ(G) ≤ k22k(2k − 2) when G is a circle graph with clique number k. The bound was
improved in [17] to χ(G) ≤ k(k + 2)2k, and in [16] to χ(G) ≤ 50 · 2k − 32k − 64. The best known
lower bound for the maximum chromatic number of circle graphs with clique number k is only
0.5k(ln k − 2) [17, 15]. The exponential gap has remained open for 25 years.

Exact results are known only for circle graphs with clique number at most 2. Kostochka [17]
showed that χ(G) ≤ 5 for every such graph G, and Ageev [1] constructed a triangle-free circle graph
with chromatic number 5.

The purpose of this paper is twofold. First, we consider a simple subclass of circle graphs, the
clean graphs. A family of intervals X is clean if no interval is contained in the intersection of two
overlapping intervals in X. A circle graph is clean if it is the overlap graph of a clean family of
intervals. Since the structure of clean graphs is much simpler than that of general circle graphs, we
are able to prove a much better bound for clean graphs.

Theorem 1.1. For every clean circle graph G with clique number k, χ(G) ≤ 2k − 1.

Moreover, the proof yields a polynomial time algorithm that for each clean circle graph G with
clique number k, �nds a (2k − 1)-coloring of a special type, a good coloring that will be de�ned
later. On the other hand, we show that for every k, there exists a clean circle graph G with clique
number k that needs 2k − 1 colors for a good coloring.

We use Theorem 1.1 to derive an upper bound on the chromatic number of K4-free circle graphs.
For such graphs G, the general bound in [17] implies that χ(G) ≤ 120. Our second main results is:

Theorem 1.2. For every circle graph G with clique number at most 3, χ(G) ≤ 38.

It could be checked that the proof of Theorem 1.2 yields a polynomial time algorithm for coloring
the graphs satisfying their conditions with the corresponding number of colors. In the next section,
we introduce the notation and basic concepts. In Section 3 we prove Theorem 1.1 and in the last
section we prove Theorem 1.2.

2. Preliminaries

By the discussion in the previous section, for every circle graph F , there exists an overlap repre-

sentation of F , that is, a family X of intervals in the real line such that F is the overlap graph of
X. In this case, we also will write that F = G(X).

We may (and will) assume that intervals in X have distinct endpoints. Indeed, let a be a real
number, index the intervals with right endpoint a as x1, . . . , xs so that l(x1) < · · · < l(xs), and
index the intervals with left endpoint a as y1, . . . , yt so that r(y1) < · · · < r(yt). Perturbing the
endpoints at a within a small range does not change the overlap relation between any pair of
intervals, unless both intervals in the pair had an endpoint at a. If the perturbation is performed
so that l(yt) < · · · l(y1) < r(xs) < · · · < r(x1), then the overlap relation of all pairs is preserved.
Thus we will work with sets of intervals in the real line with all endpoints distinct and will attempt
to color the intervals so that overlapping intervals have distinct colors.

De�nition 2.1. An interval [a, b] is a left-neighbor of [c, d] if a < c < b < d. We use LX(u) to
denote the set of all left-neighbors of an interval u in a family X, or simply L(u) when X is clear
from context. Similarly, [a, b] is a right-neighbor of [c, d] if c < a < d < b, and RX(u) denotes
the set of all right-neighbors of u. We also de�ne the closed left and right neighborhoods via
LX(u) = LX(u) ∪ {u} and RX(u) = RX(u) ∪ {u}. For each interval u, we use l(u) to denote the
left endpoint of u and r(u) to denote the right endpoint of u.
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The inclusion order is de�ned by containment. The endpoint order is de�ned by putting x ≤ y
if and only if l(x) ≤ l(y) and r(x) ≤ r(y). Note that x ≤ y in the endpoint order if and only if
x comes before y in both the left-endpoint order and the right-endpoint order. Note that any two
distinct intervals are comparable in exactly one of the inclusion order and the endpoint order.

De�nition 2.2. If S is a set of intervals, then the center of S is the intersection of the intervals in
S. A family of intervals X is clean if no interval is contained in the intersection of two overlapping
intervals in X. A circle graph is clean if it is the overlap graph of a clean family of intervals.

A set S of vertices in a graph G is a cutset if G−S is disconnected. When S is a cutset in G, the
graphs induced by the union of S and the vertices of a component of G − S are S-lobes. To color
G, it su�ces to color the S-lobes so that the colorings agree on S. To ensure that S is colored in
the same way in all S-lobes, our inductive hypothesis prescribes the way in which S is colored.

De�nition 2.3. A subset A of a poset P is a downset if y ∈ A whenever y ≤ x for some x ∈ A,
and A is an upset if y ∈ A whenever y ≥ x for some x ∈ A. For an element z ∈ P , we use D[z] to
denote the downset {y ∈ P : y ≤ z} and D(z) to denote the downset {y ∈ P : y < z}. Similarly,
U [z] denotes the upset {y ∈ P : y ≥ z} and U(z) denotes the upset {y ∈ P : y > z}. The height

of an element x ∈ X is the size of a maximum chain in D[x] and the depth of x is the size of a
maximum chain in U [x]. When X is a family of intervals, we de�ne hX(x) (or simply h(x) when X
is clear from context) to be the height of x in the endpoint order on X. The canonical coloring of
a family X of intervals assigns h(x) to each interval x ∈ X. A coloring f of a family X of intervals
is canonical, and we say that f is canonical on X, if the color classes of f form the same partition
of X as the color classes of the canonical coloring.

Note that the canonical coloring is a proper coloring; if x and y overlap, then they are comparable
in the endpoint order, and therefore h(x) 6= h(y).

3. Clean circle graphs

De�nition 3.1. A coloring f of a family of intervals X is good if, for each w ∈ X, f is canonical
on R(w).

Note that if f is a good coloring of X, then it follows that f is a proper coloring. While some
families of intervals do not admit good colorings with any number of colors, clean families have good
colorings. The goal of this section is to prove the following re�nement of Theorem 1.1.

Theorem 3.2. If X is a clean family of intervals with clique number k ≥ 1, then there is a good

coloring f of G(X) using at most 2k − 1 colors.

Proposition 3.3. In a clean family of intervals, let x be an interval with h(x) ≥ 2. If y is chosen

from D(x) to maximize l(y), then h(x) = h(y) + 1.

Proof. Let k = h(x); we use induction on k. When k = 2, the statement is trivial. Suppose k ≥ 3.
Since h(y) < h(x), it su�ces to show that h(y) ≥ h(x) − 1. Since h(x) = k, there is a chain
z1, . . . , zk with zk = x. We may assume that y 6= zk−1, so the choice of y yields l(zk−1) < l(y).
Therefore l(zk−2) < l(zk−1) < l(y). Consider the order of r(y) and r(zk−2). If r(y) < r(zk−2), then
y is contained in zk−1∩zk−2, contradicting that the family is clean. Otherwise, r(y) > r(zk−2); now
y > zk−2 and h(y) ≥ k − 1. �

Remark 3.4. Proposition 3.3 requires that the family of intervals is clean.

Proposition 3.5. Let X be a clean family, and let x be an interval in X that contains another

interval in X. If Y = X − {x}, then hY (u) = hX(u) for all u ∈ Y .
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Proof. Let z be an interval in X that is contained in x. Because X is clean, y < x implies y < z,
and y > x implies y > z. Therefore, if C is a chain containing x in the endpoint order on X, then
substituting z for x in C yields another chain of the same size. Hence hY (u) ≥ hX(u) for all u ∈ Y ,
and the other inequality holds since Y ⊆ X. �

Proposition 3.6. If X is a family of intervals that share a common point a, and the overlap graph

G(X) has clique number k, then the canonical coloring on X uses exactly k colors.

Proof. Because the canonical coloring is proper, it uses at least k colors. For the other direction, if
the canonical coloring uses r colors, then there is a chain C of size r in the endpoint order on X. It
follows that C is an independent set in the inclusion order on X. Hence, no two intervals in C are
related by containment. However, C is pairwise intersecting because every member of X contains
a. It follows that the intervals in C pairwise overlap, and so k ≥ r. �

Proposition 3.7. If f is canonical on X, and Y is a downset of X in the endpoint order, then f
is canonical on Y .

Proof. Because Y is a downset in X, we have hX(x) = hY (x) for each x ∈ Y . �

Let X be a family of intervals and let u ∈ X be an interval that is not inclusion-minimal, where
u = [a, b]. We de�ne the subordinate of u to be the interval with the rightmost right endpoint
among all intervals contained in u. Let v be the subordinate of u, where v = [c, d], and de�ne the
modi�ed subordinate to be the interval v′, where v′ = [c, b]. The right-push operation on u produces
the families Y and Y ′ and a map φ : Y → Y ′, where Y = X − u, Y ′ = Y − v + v′, and φ(x) = x
for x 6= v and φ(v) = v′.

Lemma 3.8. Let X be a family of intervals, let u ∈ X be an interval that is not inclusion-minimal,

and let Y , Y ′, and φ : Y → Y ′ be produced by the right-push operation on u. If X is clean, then

the following hold:

(1) The map φ preserves the order of the left endpoints and right endpoints. That is, l(x) < l(y)
if and only if l(φ(x)) ≤ l(φ(y)) for each x, y ∈ Y . Similarly, r(x) < r(y) if and only if

r(φ(x)) < r(φ(y)).
(2) Y and Y ′ are clean.

(3) The clique numbers of Y and Y ′ are both at most the clique number of X.

(4) For each w ∈ Y with w 6= v, we have φ(RY (w)) = RY ′(φ(w)).
(5) φ(RY (v)) ⊆ RY ′(φ(v)) and φ(RY (v)) is a lower subset of RY ′(φ(v)) in the endpoint order.

Proof. De�ne a, b, c, d so that u = [a, b] and v = [c, d].

(1) Note that no interval in X has its right endpoint strictly between d and b. Indeed, if
there were such an interval w, then either w is contained in u, in which case v is not the
subordinate of w, or {w, u} is a 2-clique whose center contains v, contradicting that X is
clean. In passing from Y to Y ', the right endpoint of v is moved from d to b to form a new
interval v′. Doing so preserves the order of the left endpoints and the right endpoints.

(2) Because Y ⊆ X and X is clean, we have that Y is clean. Note that x is contained in
the center of a 2-clique with {y, z} with y ≤ z if and only if l(y) < l(z) < l(x) and
r(x) < r(y) < r(z). Hence, the property of being clean is determined by the order of the
left endpoints and the order of right endpoints. Because φ preserves these orders, Y ′ is also
clean.
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(3) Let k be the clique number of X. Because Y ⊆ X, the clique number of Y is at most k.
Let {x1, . . . , xt} be a clique S in Y ′ with x1 < · · · < xt, and note that l(x1) < · · · < l(xt) <
r(x1) < · · · < r(xt). Suppose for a contradiction that t > k. We have that xj = v′ for some
j, or else S is a clique in Y . If j > 1, then xj−1 cannot have its right endpoint between d
and b. Because d < b and r(xj) = b, it follows that r(xj−1) < d < r(xj). But d = r(v), and
so S−v′+v is a clique of size t in Y , a contradiction. Hence it must be that j = 1. Recalling
that r(x1) = r(u) = d, we have that l(u) < l(x2) < · · · < l(xt) < r(u) < r(x2) < · · · < r(xt),
which implies that S − v′ + u is a clique of size t in X, another contradiction.

(4) If x ∈ RY (w), then passing from x to φ(x) leaves the left endpoint �xed and possibly
increases the right endpoint. Because w 6= v and φ(w) = w, it follows that φ(x) ∈ RY ′(φ(w))
and so φ(RY (w)) ⊆ RY ′(φ(w)). Conversely, if φ(x) ∈ RY ′(φ(w)), then passing from φ(x) to
x leaves the left endpoint �xed and possibly decreases the right endpoint. However, right
endpoint must remain above the right endpoint of φ(w), and so x ∈ RY (w). It follows that
RY ′(φ(w)) ⊆ φ(RY (w)).

(5) Passing from v to v′ increases the right endpoint of v, but in doing so, the right endpoint
never crosses the right endpoint of another interval. Hence, each right-neighbor of v in
Y is a right-neighbor of v′ in Y ′, and therefore φ(RY (v)) ⊆ RY ′(φ(v)). Suppose that
φ(x), φ(y) ∈ RY ′(v′), φ(x) ≤ φ(y), and y ∈ RY (v). It follows that l(v) = l(v′) < l(x) <
l(y) < r(v) < r(v′) < r(x) < r(y), and hence x ∈ RY (v) also.

�

Note that because the endpoint order on X only depends on the order of the left endpoints and
the order of the right endpoints, a consequence of Lemma 3.8 is that φ is a poset isomorphism from
Y to Y ′ under the endpoint order.

Proposition 3.9. Let X be a clean family of intervals and let u ∈ X be a non-minimal element

in the inclusion order. If v is chosen from {w ∈ X : w ⊆ u} to minimize the left endpoint, then

hX(u) = hX(v).

Proof. We argue that w < u if and only if w < v. If w < u, then also w < v or else {w, u}
is a 2-clique with v in the center, contradicting that X is clean. Conversely, if w < v, then the
extremality of v implies that w < u. �

Lemma 3.10. If X is a clean family and f is the canonical coloring on X, then f is good.

Proof. Let z ∈ X and let S = RX(z), and let hS (resp hX) be the height function on the endpoint
order on S (resp X). We show that for each u, v ∈ S, it holds that hS(u) = hS(v) if and only if
hX(u) = hX(v). For each k ≥ 0, let Tk = {w ∈ S : hS(w) = k}. Because all elements in Tk have
the same height, they are not comparable in the endpoint order, and therefore T is a chain in the
inclusion-order. Index the elements of T as u1, . . . , un so that u1 ( u2 ( · · · ( un, and �x j < n.
We claim there are no intervals in X whose left endpoint is between l(uj) and l(uj+1). Indeed, if
there are such intervals, then let v be one that minimizes the left endpoint. Note that v ( uj+1, or
else {uj+1, v} is a 2-clique with uj in the center. Also v 6∈ S, or else applying Proposition 3.9 to uj+1

and v in the family S would give that hS(v) = hS(uj+1) = k, and hence v ∈ Tk, a contradiction
because no interval in Tk has left endpoint between the left endpoints of uj and uj+1. But now
v 6∈ S implies that v is in the center of the 2-clique {z, uj+1}, a contradiction. A �nal application
of Proposition 3.9 to uj+1 and uj in X gives that hX(uj+1) = hX(uj). It follows that all intervals
in Tk have the same height in X.

For the converse, suppose that Tk and Tk′ with k < k′ have the property that all elements in
Tk ∪ Tk′ have the same height in the endpoint order on X. Fix u ∈ Tk′ . Because hS(u) = k′ and
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k < k′, there is an interval v ∈ S with v < u and hS(v) = k. It follows that v ∈ Tk. But now v and
u are comparable in the endpoint order, so they cannot have the same height in X. �

Lemma 3.11. Let X be a clean family of intervals, let u be a non-minimal element in the inclusion

order on X, and obtain Y, Y ′, and φ from the right-push operation on u. If g′ is a good coloring of

Y ′, then g′ ◦ φ is a good coloring of Y .

Proof. Consider w ∈ Y . Because g′ is good on Y ′, we have that g′ is canonical on RY ′(φ(w)). By
Lemma 3.8, we have that φ(RY (w)) is a down set of RY ′(φ(w)) in the endpoint order (even equality
holds when w 6= v). By Proposition 3.7, we have that g′ is canonical on φ(RY (w)). But φ : Y → Y ′

is an isomorphism of the endpoint orders on Y and Y ′, so g′ ◦ φ is canonical on RY (w). �

If a ∈ R, then Xa denotes the subfamily of X consisting of all intervals that contain a in their
interior, X>a denotes the subfamily of X consisting of all intervals that are entirely to the right of
a, and X<a denotes the subfamily of X consisting of all intervals that are entirely to the left of a.

Proposition 3.12. Let f be a good coloring of X, let α and β be colors, let a be a point on the real

line, and suppose that f(u) 6∈ {α, β} for each u ∈ Xa. If f ′ is the coloring of X obtained from f by

interchanging α and β on the intervals in X>a, then f ′ is also good.

Proof. Let w ∈ X and de�ne c, d so that w = [c, d]. If d > a, then every interval in RX(w) with a
color in {α, β} is in X>a, and so the change in colors does not alter the partition on RX(w) given
by the color classes of f . Similarly, if d < a, then every interval in RX(w) with a color in {α, β} is
in X<a, and so none of these intervals change colors. If d = a, then increase a by a small amount
and apply the proposition again. �

We are now ready to prove Theorem 3.2.

Proof. By induction on |X|; we may assume |X| ≥ 1 and k ≥ 2. Let x be the interval in X which
minimizes l(x). If R(x) = ∅, then x has no neighbors. Let Y = X − x, apply induction to Y to
obtain good coloring g of Y , and extend g to a coloring f of X by assigning an arbitrarily chosen
color to x. Clearly, f is canonical on each right-neighborhood.

Therefore, we may assume that x has right-neighbors. Choose y ∈ R(x) to minimize l(y), and
de�ne a and b so that y = [a, b]. Let Y1 = {z ∈ X : l(z) ≤ b} and Y2 = {z ∈ X : r(z) ≥ b}. Note
that x 6∈ Y2 and therefore Y2 ( X. If also Y1 ( X, then we may apply induction to Y1 and Y2
to obtain respective good colorings g1 and g2. Note that Y1 ∩ Y2 = {z ∈ X : l(z) ≤ b ≤ r(z)}, and
because y is inclusion-maximal, Y1 ∩ Y2 = RX(y). Consequently, all right-neighbors of y survive in
Y1 and Y2, and hence RX(y) = RY1(y) = RY2(y), which implies that g1 and g2 are canonical on
Y1 ∩ Y2. Hence, after relabeling the color names, we obtain a coloring g of X that is a common
extension of g1 and g2. Clearly, g uses at most 2k−1 colors; it remains to show that g is canonical on
each right-neighborhood. Consider u ∈ X. If r(u) ≤ b, then RX(u) ⊆ Y1 and so RX(u) = RY1(u),
which implies that g is canonical on RX(u). Otherwise, RX(u) ⊆ Y2, and so RX(u) = RY2(u),
which again implies that g is canonical on RX(u).

Hence, we may assume X = Y1. Next, we consider the case that x is not inclusion-minimal. Let
v be the subordinate of x, let v′ be the modi�ed subordinate of x, and obtain Y, Y ′, and φ from the
right-push operation on x. By Lemma 3.8, we have that Y and Y ′ are clean with clique number at
most k. By induction and Lemma 3.11, obtain good colorings g′ of Y ′ and g0 = g′ ◦ φ of Y using
at most 2k − 1 colors. Extend g0 to a coloring g of X by de�ning g(w) = g0(w) for w 6= x and
g(x) = g0(v) = g′(v′). Clearly, g uses at most 2k − 1 colors. We claim that g is a good coloring.
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First, note that because x minimizes l(x), we have that x ∈ RX(w) implies that w = x. Therefore
g inherits the canonical coloring of g0 on RX(w) whenever w 6= x. Finally, note that because X is
clean, we have that RX(x) = RY ′(v′) and hence g inherits the canonical coloring on RX(x) from
the canonical coloring of g′ on RY ′(v′).

Hence, we may assume that x is inclusion-minimal; it follows that y ∈ RX(w) implies that
w ∈ {x, y}. Next, we consider the case that y is not inclusion-minimal. Let v be the subordinate of
y, let v′ be the modi�ed subordinate, and obtain Y, Y ′ and φ from the push operation. By Lemma
3.8, we have that Y and Y ′ are clean with clique number at most k. By induction and Lemma
3.11, obtain good colorings g′ of Y ′ and g0 = g′ ◦ φ of Y using at most 2k − 1 colors. We use g0
to construct a good coloring of X. Because Y = X − x, to extend a good coloring of Y to a good
coloring of X, we must assign a color to y so that the coloring remains canonical on each closed
right-neighborhood. Because y is only in the closed right-neighborhood of x and y, we need only
verify that the coloring is canonical on RX(x) and RX(y).

We consider two subcases. First, suppose that y is inclusion-minimal in RX(x). Because y is
chosen from RX(x) to minimize l(y), it follows that x < y < z for every z ∈ RX(x)− {x, y}. With
Z1 = RX(x) and Z2 = RY (x) = RX(x)− {y}, this implies that two elements have the same height
in Z2 if and only if they have the same height in Z1, and y is the only element of height 1 in Z1.
Consequently, an extension of g0 to X is canonical on RX(x) if and only if it assigns y a color that
is not used on any other interval in RX(x). Similarly, y < z for each z ∈ RX(y) − {y} and hence
an extension of g0 to X is canonical on RX(y) if and only if y is assigned a color that is not used
on any other interval in RX(y). Because g0 is canonical on RY (x) and the clique number of RY (x)
is at most k− 1 (indeed, every maximal clique in RX(x) contains y), it follows that g0 uses at most
k − 1 colors on RY (x). Also, g

′ uses at most k colors on RY ′(v′), and hence g0 uses at most k − 1
colors on RX(y) (indeed, g′(v′) is used on v′ ∈ RY ′(v′) but is not used on any interval in RX(y)).
Because 2k− 1 colors are available and at most 2k− 2 provide con�icts, one color remains available
for assignment to y.

The second subcase is that y is not inclusion-minimal in RX(x). Let z be the interval that
minimizes l(z) among all intervals in RX(x) that are contained in y. Note that z is also the interval
that minimizes l(z) among all that are contained in y. Let α = g0(z). By Proposition 3.9, the
height of y and the height of z are the same in all subsets of X containing z and y. By induction,
we have that g0 is canonical on RX(x) − y. Applying Proposition 3.5 to RX(x), an extension of
g0 to X is canonical on RX(x) if and only if y is assigned color α. Also, an extension of g0 to
X is canonical on RX(y) if and only if y is assigned a color di�erent from every other interval in
RX(y). If α is not used on RX(y), then we may assign α to y. Otherwise, we �rst modify g0 before
extending to X. Note that z is inclusion-maximal in Y , and let a be a point slightly to the right
of r(z). Because z is inclusion-maximal in Y , every interval in Y that contains a is in RY (z). Let
A be the set of colors that g0 uses on intervals containing a. Because g0 is canonical on RY (z), at
most k colors are used on these intervals; because g0 uses α on z ∈ RY (z), we have α 6∈ A and hence
|A| ≤ k − 1. Let B be the set of colors that g0 uses on intervals in RX(y). Because g′ is canonical
on RY ′(v′), RX(y) = RY ′(v′)− {v′}, and v′ overlaps with every other interval in RY ′(v′), we have
that |B| ≤ k− 1. Let β be a color that g0 uses but is not contained in A∪B. Obtain g1 from g0 by
applying Proposition 3.12 with colors {α, β} at point a. Note that because β 6∈ B, we have that g1
does not use α on any interval in RX(y). Also, g1(z) = α and an extension of g1 to X is canonical
on RX(x) if and only if y is assigned color α. Therefore, we obtain a good coloring of X from g1
by assigning y the color α.

Hence, we may assume that both x and y are inclusion-minimal. By Lemma 3.10, the canonical
coloring on X is good. Because X − x = RX(y) and Proposition 3.6 implies that the canonical
coloring uses at most k colors on RX(y), the canonical coloring on X uses at most k + 1 colors in
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v1
v′1

v2
v′2

v3
v′3

v4
v′4

v0 v′0

Figure 1. Construction in Theorem 3.13.

total. �

Theorem 3.13. For each k ≥ 1, there is a clean circle graph G with ω(G) = k such that every good

coloring of G uses at least 2k − 1 colors.

Proof. We construct G in stages. Our construction uses a set of k − 1 intervals V that induce a
clique in the overlap graph and a set of k− 1 intervals V ′ that form a chain under inclusion. These
intervals are represented by solid lines in Figure 1, which presents the construction for k = 5. Let
V = {v1, . . . , vk−1} and let V ′ = {v′1, . . . , v′k−1}, indexed so that v1 < · · · < vk−1 and v′1 ⊇ · · · ⊇
v′k−1. The left endpoint of v

′
j is placed slightly to the left of l(vj), and the right endpoints of intervals

in V ′ satisfy r(v′1) ≥ · · · ≥ r(v′k−1). Next, add v0 so that v0 is a left-neighbor of all intervals in
V ∪ V ′, and add v′0 so that v′0 is a right-neighbor of all intervals in V but contained in all intervals
in V ′.

Because a good coloring must be canonical on R(v0), it follows that a good coloring assigns the
same color to vj and v′j for j ≥ 1, and hence k − 1 distinct colors are assigned to intervals in V ′.

Since v′0 is a right-neighbor of each interval in V , it follows that k distinct colors are assigned to
intervals in V ′ ∪ {v′0}. These intervals form an independent set in the overlap graph.

In the second stage, we add a set S of k−1 pairwise overlapping intervals such that each interval
in S overlaps with intervals in V ′ ∪ {v′0} and no others. Intervals in S are represented by dashed
lines in Figure 1. A good coloring must use k− 1 new colors on S, and hence at least 2k− 1 colors
in total. �

4. Chromatic number of K4-free circle graphs

In this section, we study the chromatic number of circle graphs with clique number at most 3.
By Theorem 3.2, it follows that a clean K4-free circle graph has chromatic number at most 5. We
need a lemma which provides 5-colorings of other circle graphs. Recall that if a is a point in R,
then Xa is the set of all intervals in X that contain a.

Lemma 4.1. Let a1, . . . , ak and b1, . . . , bk be points with a1 < b1 < a2 < b2 < · · · < ak < bk, and let

Sj = {aj , bj}. Let X be a family of intervals, each of which has nonempty intersection with exactly

one of the sets in {S1, . . . , Sk}. If ω(G(X)) ≤ 3 and ω(G(Xc)) ≤ 2 for each c ∈ {a1, . . . , ak} ∪
{b1, . . . , bk}, then there is a proper 5-coloring of G(X) with a distinguished color α such that every
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interval assigned color α is disjoint from {a1, . . . , ak} and for each c ∈ {a1, . . . , ak} ∪ {b1, . . . , bk},
at most 4 colors are used on intervals in Xc.

Proof. Partition X into A1, B1, . . . , Ak, Bk as follows. If Sj is the unique set in {S1, . . . , Sk} that
has nonempty intersection with x, then we assign x to the set Aj if aj ∈ x or to the set Bj otherwise.
Note that for all 1 ≤ i, j ≤ k, we have ω(G(Ai)) ≤ 2 and ω(G(Bj)) ≤ 2, and hence the endpoint
orders on Ai and Bj are posets of height at most 2.

The canonical coloring is de�ned with respect to height in the endpoint order. The dual-canonical
coloring of a family of intervals colors each interval with its depth in the endpoint order. When
the interval order on Z has height at most t, the (β1, . . . , βt)-canonical coloring on Z assigns to
an interval z ∈ Z the color βj , where j is the height of z in the endpoint order. Similarly, the
(β1, . . . , βt)-dual-canonical coloring on Z assigns to an interval z ∈ Z the color βj , where j is the
depth of z in the endpoint order. We color each Aj canonically, and we color each Bj with a
dual-canonical coloring.

We use {1, 2, 3, 4, α} as our set of colors. If j is odd, then we use the (2, 1)-canonical coloring
on Aj and the (α, 3)-dual-canonical coloring on Bj . If j is even, then we use the (4, 3)-canonical
coloring on Aj and the (α, 1)-dual-canonical coloring on Bj . First, note that if x has color α, then
x is in some Bj , which implies that x contains bj but not aj , and therefore x does not contain any
of the points in {a1, . . . , ak}.

Note that for each j, at most 4 colors are used on intervals in Aj ∪ Bj . It follows that for each
c ∈ {a1, . . . , ak} ∪ {b1, . . . , bk}, at most 4 colors are used on intervals in Xc. It remains to check
that the coloring is proper. Note that the colors used on Aj are disjoint from the colors used on
Bj . Since the coloring is proper on Aj and on Bj , it follows that the coloring is proper on Aj ∪Bj .
Moreover, if x ∈ Ai ∪ Bi and y ∈ Aj ∪ Bj overlap, it follows that |i − j| ≤ 1 and y overlap, since
each interval in X meets exactly one of the sets in {S1, . . . , Sk}.

Suppose that x ∈ Ai ∪Bi and y ∈ Aj ∪Bj overlap. If i = j, then x and y receive di�erent colors
since the coloring is proper on Ai ∪ Bi. Hence, we may assume that j = i + 1. Note that aj ∈ y,
since otherwise aj would separate x and y. It follows that y ∈ Aj . If y has height 0 in Aj , then the
color assigned to y is not used for intervals in Ai ∪Bi and hence x and y receive di�erent colors. If
y has height 1 in Aj , then the color β assigned to y is used only for the intervals in Ai ∪ Bi that
have depth 1 in Bi. Suppose for a contradiction that x also receives color β. Since x has depth
1 in Bi, there exists x′ ∈ Bi with x < x′ in the endpoint order. Similarly, since y has height 1
in Aj , there exists y′ ∈ Aj with y′ < y in the endpoint order. Moreover l(x′) < bi < l(y) and
r(x′) < a3 < r(y′) and therefore x′ < y′ in the endpoint order. But then {x, x′, y′, y} is a 4-clique
in G(X) since x < x′ < y′ < y in the endpoint order and x and y overlap. �

Example 4.2. The complement of the cycle on 7 vertices, denoted C7, is the overlap graph of a
family of intervals that satis�es the hypotheses of Lemma 4.1 with carefully chosen points a1 and
b1 (see Figure 2). Consequently, Lemma 4.1 cannot be improved by more than one color.

Our next task is to explore the structure of segments. A segment of a family X is an inclusion-
maximal interval in the set of all centers of 2-cliques in X.

Lemma 4.3. Let X be a family of intervals. If [a, b] and [c, d] are overlapping segments of X with

a < c < b < d, then there exists x ∈ X with l(x) ∈ [a, c) and r(x) ∈ (b, d].

Proof. Let y1 and y2 be overlapping intervals in X with y1 < y2 and center [a, b]. Let z1 and z2 be
overlapping intervals in X with z1 < z2 and center [c, d]. Note that l(y2) = a and r(z1) = d. We
claim that either r(y2) ∈ (b, d] or l(z1) ∈ [a, c). Because r(y2) > b and l(z1) < c, failure requires
r(y2) > d and l(z1) < a. But then we have l(z1) < l(y2) = a < d = r(z1) < r(y2) which implies
that z1 and y2 are overlapping intervals in X with center [a, d], contradicting that [a, b] and [c, d]
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a1 b1

Figure 2. C7 as the overlap graph of a family of intervals.

are segments. Hence, either y2 or z1 is as required. �

Lemma 4.4. Let X be a family of intervals. If u1, . . . , ut are overlapping segments of X with

u1 < u2 < · · · < ut, then [l(ut), r(u1)] is the center of a (t+ 1)-clique in X.

Proof. For 1 ≤ j < t, apply Lemma 4.3 to the segments uj and uj+1 to obtain zj ∈ X with
l(zj) ∈ [l(uj), l(uj+1)) and r(zj) ∈ (r(uj), r(uj+1)]. Of the overlapping pair of intervals in X whose
center is u1, let z0 be the leftmost in the endpoint order. Similarly, of the overlapping pair of
intervals in X whose center is ut, let zt be the rightmost in the endpoint order. It follows that
l(z0) < l(z1) < · · · < l(zt) < r(z0) < r(z1) < · · · < r(zt) and so {z0, . . . , zt} is a (t+ 1)-clique in X
with center [l(ut), r(u1)]. �

As a consequence of Lemma 4.4, if X has clique number k and U is the family of segments of X,
then U has clique-number at most k − 1. Moreover, by de�nition, each interval in U is inclusion-
maximal. Hence the endpoint order on U is a chain. If X has clique number at most 3, then every
component of the overlap graph of U is a chain.

We need the following lemma due to Gyárfás [9].

Lemma 4.5. Let X be a of intervals such that G(X) is connected, let x0 be the interval in X that

minimizes l(x0), and for each k ≥ 0, let Xk be the set of all intervals at distance k from x in G(X).
Let k be a positive integer, and let [a, b] be an interval such that [a, b] ⊆

⋃
x∈Xk

x. If z ∈ Sk−1 and

one endpoint of z is in [a, b], then the other endpoint of z is outside [a, b].

Our next lemma ties together the two separate coloring strategies given by Theorem 3.2 and
Lemma 4.1, and is at the heart of our proof. The clean part of a family of intervals X is the set of
intervals in X that are not contained in a segment of X. Note that the clean part of a family of
intervals is clean. In the following, we �x disjoint color sets A and B of sizes 10 and 9, respectively.

Lemma 4.6. Let X be a family of intervals such that no interval is contained in the center of a

3-clique, G(X) is connected, and ω(G(X)) ≤ 3. Let x0 be the interval in X that minimizes l(x0),
and for k ≥ 0, let Xk be the set of intervals at distance k from x0. Let Yk be the clean part of Xk,

and let Zk be the complement Xk − Yk.
For each nonnegative integer k, there is a set Pk of points and a proper (A ∪ B)-coloring of

G(X0 ∪ . . . ∪Xk) with the following properties.

(1) If j > k and x ∈ Xj, then x and Pk are disjoint.

(2) Every interval in Zk contains a point in Pk.

(3) The colors used on Yk are contained in a subset A′ of A with |A′| ≤ 5.
10



(4) The colors used on Zk are contained in B.

(5) Let I be an inclusion-maximal interval in R−Pk. There exists a subset B′ of B with |B′| ≤ 5
such that every interval in Zk that overlaps I has a color in B′ and there is a color β ∈ B′
such that z overlaps I on the left whenever z ∈ Zk overlaps I and has color β.

Proof. For k = 0, we let P0 = ∅ and color the single interval x0 in X0 with an arbitrary color in A.
Since Y0 = {x0} and Z0 = ∅, the conditions (1)�(5) are satis�ed.

For k ≥ 1, we obtain a set of points Pk−1 and a proper (A ∪ B)-coloring of G(X0 ∪ . . . ∪Xk−1)
with conditions (1)�(5) by induction. We �rst extend the coloring to G(X0 ∪ . . . ∪Xk). Note that
an interval in Xk overlaps only with intervals in Xk−1∪Xk. Since property (3) implies that at most
5 colors are used on intervals in Yk−1 and |A| = 10, there is a set A′ of 5 colors in A, none of which
appear on intervals in Yk−1. Since Yk is clean, Theorem 3.2 implies that Yk has a proper 5-coloring.
We use the colors in A′ to color Yk.

Every interval in Zk is contained in a segment of Xk. Let u1, . . . , us be the segments of Xk,
indexed so that u1 < · · · < us in the endpoint order. For each segment uj , we de�ne a left-pin

aj and a right-pin bj . Let ε be a positive real number that is less than the minimum distance
between two endpoints of intervals in X. When there are intervals in Xk−1 that overlap uj on
the left, we de�ne aj to be max{r(x) : x ∈ Xk−1 and x overlaps uj on the left}. When there are
no such intervals, we de�ne aj to be r(uj−1) + ε when uj−1 exists and overlaps uj and l(uj) + ε
otherwise. Similarly, when there are intervals in Xk−1 that overlap uj on the right, we de�ne bj
to be min{l(x) : x ∈ Xk−1 and x overlaps uj on the right}. When there are no such intervals, we
de�ne bj to be l(uj+1)− ε when uj+1 exists and overlaps uj and r(uj)− ε otherwise.

Note that no pin is in more than one segment. If some pin c ∈ {a1, . . . , as, b1, . . . , bs} were
contained in uj and uj+1, it follows from the de�nition of c that there is an interval x ∈ Xk−1 with
c as an endpoint. Moreover, Lemma 4.4 implies that there is a 3-clique {x1, x2, x3} in Xk whose
center is the same as the center of {uj , uj+1}. Since c is in the center of {x1, x2, x3}, Lemma 4.5
implies that the other endpoint of x is outside x1 ∪ x2 ∪ x3, and so x overlaps each of interval in
{x1, x2, x3}. Therefore {x1, x2, x3, x} is a 4-clique in X, a contradiction.

Next, we argue that every interval z ∈ Zk contains some pin in its interior. Since z ∈ Zk, it
follows that z is contained in some segment uj . Since z is at distance k from x0 in G(X), it follows
that z overlaps with an interval x at distance k − 1 from x0 in G(X). Suppose that x overlaps z
to the left, so that r(x) is in the interior of z. We claim that z contains the left-pin of uj . Since
x ∈ Xk−1, it follows that aj ≥ r(x) > l(z). Let x′ be the interval in Xk−1 whose right endpoint is
aj , and let x1 and x2 be the intervals in Xk whose center is the segment uj . Lemma 4.5 implies that
the left endpoint of x′ is outside x1 ∪ x2, which implies that {x′, x1, x2} is a 3-clique in X. Since z
is contained in the center of x1 and x2 and z is not contained in a 3-clique of X, it must be that z
is not contained in x′, which implies that aj = r(x′) < r(z). Hence l(z) < aj < r(z). Similarly, if x
overlaps z on the right, then z contains the right-pin of uj .

For each j with 1 ≤ j ≤ s, let Sj = {aj , bj}. Since an interval z ∈ Zk is contained in some segment
uj and uj contains only the pins aj and bj , it follows that z has nonempty intersection with exactly
one of the sets in {S1, . . . , Ss}. We claim that if c is a pin, then ω(G(Zc

k)) ≤ 2. This is immediate
if c is an endpoint of an interval in Xk−1. Otherwise, let c′ be the other pin associated with the

segment containing c, and note that Zc
k ⊆ Zc′

k . If c
′ is an endpoint of an interval in Xk−1, then we

have ω(G(Zc
k)) ≤ ω(G(Zc′

k )) ≤ 2. If neither c nor c′ is the endpoint of an interval in Xk−1, then it

must be that Zc
k = Zc′

k = ∅. Therefore every subset of Zk satis�es the hypotheses of Lemma 4.1
with respect to the points a1, . . . , as and b1, . . . , bs.

It remains to color Zk. Let I be an inclusion-maximal interval of R− Pk−1, and let L be the set
of intervals in Zk that are contained in I. Since intervals in distinct inclusion-maximal intervals of
R− Pk−1 do not overlap, we may color L independently of the rest of Zk.
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By property (5), there exists B0 ⊆ B with |B0| ≤ 5 such that every interval in Zk−1 that overlaps
I has a color in B0 and there is a distinguished color α ∈ B0 such that if z ∈ Zk−1 overlaps I and
has color α, then z overlaps I on the left. Let B′ = B −B0 ∪ {α}, and note that |B′| = 5.

Using the colors in B′ and the distinguished color α, apply Lemma 4.1 to color L. We claim
that the coloring remains proper. If not, then there are intervals z ∈ L and z′ ∈ Xk−1 that overlap
and have the same color. Since the color of z is in B′, the color of z′ is also in B′, which implies
that z′ ∈ Zk−1. By property (2), we have that z′ contains a point in Pk−1, and it follows that z′

overlaps I. Hence, property (5) implies that the color of z′ is in B0. Since B0 ∩B′ = {α}, it follows
that the common color of z and z′ is α. It now follows that z′ overlaps I on the left. Since z′ is an
interval in Xk−1 that overlaps z on the left, it follows that z contains the left-pin aj of the segment
uj containing z, contradicting that each interval in L with color α is disjoint from {a1, . . . , as}.

We have obtained a proper (A∪B)-coloring of G(X0∪· · ·∪Xk). Let Pk be the union of Pk−1 and
the points in {a1, . . . , as, b1, . . . , bs} that are endpoints of intervals in Xk−1. It remains to check that
the coloring and Pk satisfy properties (1)�(5). Note that if x has distance k− 1 from x0 and x

′ has
distance at least k+1, then x′ does not contain either endpoint of x. Since every point in Pk−Pk−1
is an endpoint of some interval in Xk−1, it follows that no interval in Xj for j > k contains a point
in Pk, which implies property (1). If z ∈ Zk, then z overlaps some interval x ∈ Xk−1. Let u be the
segment of Xk containing z. If x overlaps z on the left, then z contains the left-pin of u which is
the endpoint of an interval in Xk−1. Otherwise, if x overlaps z on the right, then z contains the
right-pin of u which is the endpoint of an interval in Xk−1. In either case, z contains a point in Pk,
and therefore property (2) is satis�ed. It is clear from our coloring that properties (3) and (4) are
satis�ed.

Let I be an inclusion-maximal interval in R−Pk. Since Pk−1 ⊆ Pk, it follows that I is contained
in an inclusion-maximal interval I ′ in R−Pk−1. Let L be the set of intervals in Zk that are contained
in I ′, and let B′ be the set of 5 colors in B that are used to color intervals in L. Clearly, every
interval in Zk that overlaps I has a color in B′. Let c be the right endpoint of I. By Lemma 4.1, at
most 4 colors are used on intervals in Lc. It follows that there is a color β ∈ B′ such that every inter-
val in L with color β that overlaps I does so on the left. It follows that property (5) is satis�ed. �

With Lemma 4.6, we are now able to complete our upper bound on the chromatic number of a
circle graph with clique number at most 3.

Proof of Theorem 1.2. We may assume that G(X) is connected. Let x0 be the interval in X
that minimizes l(x0), and for k ≥ 0, let Xk be the set of intervals that are at distance k from x0 in
G(X).

Note that no interval in Xk is contained in the center of a 3-clique of Xk. This is immediate if
k = 0 since X0 = {x0}. For k ≥ 1, if some interval x were contained in the center of a 3-clique
{x1, x2, x3} in Xk, then there is an interval x′ in Xk−1 that overlaps x, and Lemma 4.5 would imply
that {x1, x2, x3, x′} is a 4-clique in G(X), a contradiction.

Therefore Lemma 4.6 implies that χ(G(Xk)) ≤ 19. Using disjoint color sets for X0 ∪ X2 ∪ · · ·
and X1 ∪X3 ∪ · · · , we have that χ(G(X)) ≤ 38. �

References

[1] A.A. Ageev. A triangle-free circle graph with chromatic number 5. Discrete Math., 152(1-3):295�298, 1996.
[2] A. Bouchet. Un algorithme polynomial pour reconnaître les graphes d'alternance. (french) [a polynomial algo-

rithm for recognizing circle graphs]. Canad. J. Math., 11(16):34�38, 1959.
[3] H. de Fraysseix. A characterization of circle graphs. Europ. J. Comb., 5:223�238, 1983.
[4] P. Erd®s. Graph theory and probability. C. R. Acad. Sci. Paris Sér. I Math., 300:569��572, 1985.

12



[5] S. Even and A. Itai. Queues, stacks and graphs. In Theory of Machines and Computations, pages 71�86. Academic
Press, New York, 1971.

[6] M. Garey, D. Johnson, G. Miller, and Papadimitriou C. The complexity of coloring circular arcs and chords.
SIAM J. Alg. Disc. Methods, 1:216�227, 1980.

[7] F. Gavril. Algorithms for a maximum clique and a maximum independent set of a circle graph. Networks,
3:261�273, 1973.

[8] M. C. Golumbic. Algorithmic graph theory and perfect graphs. Academic Press, New York-London-Toronto, 1980.
[9] A. Gyárfás. On the chromatic number of multiple interval graphs and overlap graphs. Discrete Math., 55(2):161�

166, 1985.
[10] A. Gyárfás. Corrigendum: �On the chromatic number of multiple interval graphs and overlap graphs�. Discrete

Math., 62(3):333, 1986.
[11] A. Gyárfás. Problems from the world surrounding perfect graphs. Zastos. Mat., 19:413��441, 1988.
[12] A. Gyárfás and J. Lehel. Covering and coloring problems for relatives of intervals. Discrete Math., 55:167�180,

1985.
[13] I.A. Karapetyan. Chordal graphs. Mat. Voprosy Kibernet. Vychisl. Tekhn., (14):6�10, 1985.
[14] J. M. Keil and L. Stewart. Approximating the minimum clique cover and other hard problems in subtree �lament

graphs. Discrete Appl. Math., 154:1983�1995, 2006.
[15] A. Kostochka. Coloring intersection graphs of geometric �gures with a given clique number. In Towards a theory

of geometric graphs, volume 342 of Contemp. Math., pages 127�138. Amer. Math. Soc., Providence, RI, 2004.
[16] A. Kostochka and J. Kratochvíl. Covering and coloring polygon-circle graphs. Discrete Math., 163(1-3):299�305,

1997.
[17] A.V. Kostochka. On upper bounds for the chromatic numbers of graphs. Trudy Instituta Mathematiki, 10:204�

226, 1988. (In Russian).
[18] J. Mycielski. Sur le coloriage des graphs. Colloq. Math., 3:161�162, 1955.

Department of Mathematics, University of Illinois at Urbana-Champaign and Sobolev Institute

of Mathematics, Novosibirsk, Russia

E-mail address: kostochk@math.uiuc.edu

Department of Mathematics, University of South Carolina, Columbia, South Carolina

E-mail address, Kevin G. Milans: milans@math.sc.edu

13


	1. Introduction
	2. Preliminaries
	3. Clean circle graphs
	4. Chromatic number of K4-free circle graphs
	References

