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Boolean Algebras

I Let [n] = {1, . . . , n}.

I The n-dimensional Boolean lattice is the containment order
on 2[n].

Definition

I Given disjoint sets X0,X1, . . . ,Xd , with Xi 6= ∅ for i ≥ 1,

the
generated d-dimensional Boolean algebra is the family of all
sets formed by the union of X0 with 0 or more members of
{X1, . . . ,Xd}.

I Such a family of 2d sets forms a copy of Bd .

I A family is Bd -free if it does not contain a copy of Bd .
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Turán Problem

I What is the largest size of a Bd -free subfamily of 2[n]?

I Let b(n, d) = max
{
|F| : F ⊆ 2[n] and F is Bd -free

}
.

Prior Work

Theorem

b(n, d) ≤ 50 · n−
1

2d · 2n.



Turán Problem

I What is the largest size of a Bd -free subfamily of 2[n]?

I Let b(n, d) = max
{
|F| : F ⊆ 2[n] and F is Bd -free

}
.

Prior Work

Theorem

b(n, d) ≤ 50 · n−
1

2d · 2n.



Turán Problem

I What is the largest size of a Bd -free subfamily of 2[n]?

I Let b(n, d) = max
{
|F| : F ⊆ 2[n] and F is Bd -free

}
.

Prior Work

I [Sperner] b(n, 1) =
( n
bn/2c

)
∼
√

2/π · n−1/2 · 2n
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A useful sequence of functions

Definition

I Let α0(n) = 0.

I For d ≥ 1, define αd(n) = 1
2 +

√
2nαd−1(n) + 1

4 .

Facts

I For d ≥ 1, the bounds (2n)
1− 2

2d ≤ αd(n) ≤ (4n)
1− 2

2d hold.

I For fixed d , we have αd(n) = (1 + o(1))(2n)
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the
generated affine d-cube is the set of all integers obtained by
adding x0 to the sum of 0 or more members of {x1, . . . , xd}.

Lemma (Szemerédi 1969)

If A ⊆ [0, n] and |A| > αd(n), then A contains an affine d-cube.
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Szemerédi’s Cube Lemma

I Given x0, x1, . . . , xd with x0 ≥ 0 and xi ≥ 1 for i ≥ 1, the
generated affine d-cube is the set of all integers obtained by
adding x0 to the sum of 0 or more members of {x1, . . . , xd}.

Lemma (Szemerédi 1969)
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Szemerédi’s Cube Lemma

0 n

Lemma (Szemerédi 1969)

If A ⊆ [0, n] and |A| > αd(n), then A contains an affine d-cube.

I Using αd(n) ≤ (4n)
1− 2

2d < 4n
1− 2

2d , we obtain:

Corollary

If A ⊆ [0, n] and |A| ≥ 4n
1− 2

2d , then A contains an affine d-cube.
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hn(F), is E[X ].

I Think of hn(F) as a measure of the
size of F , with 0 ≤ hn(F) ≤ n + 1.
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Extension of Szemerédi’s Cube Lemma: Proof

Theorem
If F ⊆ 2[n] and hn(F) > αd(n), then F contains a copy of Bd .

∅

[n]
I By induction on d . Case d = 0: trivial.

I Let X be the number of times a random
full chain meets F .

I E[X ] = hn(F) > αd(n).

I By convexity:

E[
(X
2

)
] ≥

(E[X ]
2

)
>
(
αd (n)

2

)
= nαd−1(n)

I Recall: FS is the family of all A ∈ F that
are disjoint from S with A ∪ S ∈ F .
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Extension of Szemerédi’s Cube Lemma: Proof

Theorem
If F ⊆ 2[n] and hn(F) > αd(n), then F contains a copy of Bd .

∅

[n]

S

S

S

I

n∑
k=1

1(n
k

) ∑
S∈([n]k )

hn−k(FS) > nαd−1(n)

I Find k such that
1(n
k

) ∑
S∈([n]k )

hn−k(FS) > αd−1(n)

I Find S ∈
([n]
k

)
with hn−k(FS) > αd−1(n).

I By induction, FS contains a copy of Bd−1
generated by X0, . . . ,Xd−1.

I F contains a copy of Bd generated by
X0, . . . ,Xd with Xd = S .
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Extension of Szemerédi’s Cube Lemma: Proof

Theorem
If F ⊆ 2[n] and hn(F) > αd(n), then F contains a copy of Bd .

∅

[n]

X1

X0

S

S
X1

I

n∑
k=1

1(n
k

) ∑
S∈([n]k )

hn−k(FS) > nαd−1(n)

I Find k such that
1(n
k

) ∑
S∈([n]k )

hn−k(FS) > αd−1(n)

I Find S ∈
([n]
k

)
with hn−k(FS) > αd−1(n).

I By induction, FS contains a copy of Bd−1
generated by X0, . . . ,Xd−1.

I F contains a copy of Bd generated by
X0, . . . ,Xd with Xd = S .



Turán Results

Theorem
If F ⊆ 2[n] and hn(F) > αd(n), then F contains a copy of Bd .

Corollary

If F ⊆ 2[n] and hn(F) ≥ 4n
1− 2

2d , then F contains a copy of Bd .

I Partitioning 2[n] into consecutive segments of
√

n levels and
applying an averaging argument yields:

Theorem
If F ⊆ 2[n] and |F| ≥ 50n−1/2

d · 2n, then F contains a copy of Bd .



Turán Results

Theorem
If F ⊆ 2[n] and hn(F) > αd(n), then F contains a copy of Bd .

Corollary

If F ⊆ 2[n] and hn(F) ≥ 4n
1− 2

2d , then F contains a copy of Bd .

I Partitioning 2[n] into consecutive segments of
√

n levels and
applying an averaging argument yields:

Theorem
If F ⊆ 2[n] and |F| ≥ 50n−1/2

d · 2n, then F contains a copy of Bd .



Turán Results

Theorem
If F ⊆ 2[n] and hn(F) > αd(n), then F contains a copy of Bd .

Corollary

If F ⊆ 2[n] and hn(F) ≥ 4n
1− 2

2d , then F contains a copy of Bd .

I Partitioning 2[n] into consecutive segments of
√

n levels and
applying an averaging argument yields:

Theorem
If F ⊆ 2[n] and |F| ≥ 50n−1/2

d · 2n, then F contains a copy of Bd .



Turán Results

Theorem
If F ⊆ 2[n] and hn(F) > αd(n), then F contains a copy of Bd .

Corollary

If F ⊆ 2[n] and hn(F) ≥ 4n
1− 2

2d , then F contains a copy of Bd .

I Partitioning 2[n] into consecutive segments of
√

n levels and
applying an averaging argument yields:

Theorem
If F ⊆ 2[n] and |F| ≥ 50n−1/2

d · 2n, then F contains a copy of Bd .



Ramsey Problem
I How many parts are needed to partition 2[n] into Bd -free

families?

I Let r(n, d) be the minimum number of parts needed.

Prior Work

Theorem

r(n, d) ≥ 1

4
· n

2

2d

Thank You.



Ramsey Problem
I How many parts are needed to partition 2[n] into Bd -free

families?

I Let r(n, d) be the minimum number of parts needed.

Prior Work

Theorem

r(n, d) ≥ 1

4
· n

2

2d

Thank You.



Ramsey Problem
I How many parts are needed to partition 2[n] into Bd -free

families?

I Let r(n, d) be the minimum number of parts needed.

Prior Work

I Clearly, r(n, 1) = n + 1.
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I [Gunderson–Rödl–Sidorenko 1999] For d > 2, there exists cd
such that for n sufficiently large

cd · n
1

2d ≤ r(n, d) ≤ n
d

2d−1
(1+o(1))

.

I Here, cd = (10d)−d(1 + o(1)).

Theorem

r(n, d) ≥ 1

4
· n

2

2d

Thank You.



Ramsey Problem
I How many parts are needed to partition 2[n] into Bd -free

families?

I Let r(n, d) be the minimum number of parts needed.

Prior Work
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