Turán and Ramsey Results for Boolean Algebras

Kevin G. Milans (milans@math.wvu.edu) Joint with L. Lu and J. T. Johnston

West Virginia University

AMS Spring Central Section Meeting Iowa State University 28 April 2013

• Let
$$[n] = \{1, \ldots, n\}.$$

• Let
$$[n] = \{1, \ldots, n\}.$$

 The n-dimensional Boolean lattice is the containment order on 2^[n].

• Let
$$[n] = \{1, \ldots, n\}.$$

 The n-dimensional Boolean lattice is the containment order on 2^[n].

Definition

• Given disjoint sets X_0, X_1, \ldots, X_d , with $X_i \neq \emptyset$ for $i \ge 1$,

• Let
$$[n] = \{1, \ldots, n\}.$$

 The *n*-dimensional Boolean lattice is the containment order on 2^[n].

Definition

► Given disjoint sets X₀, X₁,..., X_d, with X_i ≠ Ø for i ≥ 1, the generated d-dimensional Boolean algebra is the family of all sets formed by the union of X₀ with 0 or more members of {X₁,..., X_d}.

• Let
$$[n] = \{1, \ldots, n\}.$$

 The *n*-dimensional Boolean lattice is the containment order on 2^[n].

Definition

- ► Given disjoint sets X₀, X₁,..., X_d, with X_i ≠ Ø for i ≥ 1, the generated d-dimensional Boolean algebra is the family of all sets formed by the union of X₀ with 0 or more members of {X₁,..., X_d}.
- Such a family of 2^d sets forms a copy of \mathcal{B}_d .

• Let
$$[n] = \{1, \ldots, n\}.$$

 The *n*-dimensional Boolean lattice is the containment order on 2^[n].

Definition

- ► Given disjoint sets X₀, X₁,..., X_d, with X_i ≠ Ø for i ≥ 1, the generated d-dimensional Boolean algebra is the family of all sets formed by the union of X₀ with 0 or more members of {X₁,..., X_d}.
- Such a family of 2^d sets forms a copy of \mathcal{B}_d .
- A family is \mathcal{B}_d -free if it does not contain a copy of \mathcal{B}_d .

• What is the largest size of a \mathcal{B}_d -free subfamily of $2^{[n]}$?

- What is the largest size of a \mathcal{B}_d -free subfamily of $2^{[n]}$?
- Let $b(n, d) = \max \{ |\mathcal{F}| : \mathcal{F} \subseteq 2^{[n]} \text{ and } \mathcal{F} \text{ is } \mathcal{B}_d\text{-free} \}.$

- ▶ What is the largest size of a B_d-free subfamily of 2^[n]?
- Let $b(n,d) = \max \{ |\mathcal{F}| : \mathcal{F} \subseteq 2^{[n]} \text{ and } \mathcal{F} \text{ is } \mathcal{B}_d\text{-free} \}.$

Prior Work

► [Sperner]
$$b(n,1) = \binom{n}{\lfloor n/2 \rfloor} \sim \sqrt{2/\pi} \cdot n^{-1/2} \cdot 2^n$$

- ► What is the largest size of a B_d-free subfamily of 2^[n]?
- Let $b(n,d) = \max \{ |\mathcal{F}| : \mathcal{F} \subseteq 2^{[n]} \text{ and } \mathcal{F} \text{ is } \mathcal{B}_d\text{-free} \}.$

Prior Work

- ► [Sperner] $b(n,1) = \binom{n}{\lfloor n/2 \rfloor} \sim \sqrt{2/\pi} \cdot n^{-1/2} \cdot 2^n$
- ► [Erdős–Kleitman 1971] For some constants c₁, c₂ and n sufficiently large

$$c_1 \cdot n^{-1/4} \cdot 2^n \leq b(n,2) \leq c_2 \cdot n^{-1/4} \cdot 2^n.$$

- ► What is the largest size of a B_d-free subfamily of 2^[n]?
- Let $b(n,d) = \max \{ |\mathcal{F}| : \mathcal{F} \subseteq 2^{[n]} \text{ and } \mathcal{F} \text{ is } \mathcal{B}_d\text{-free} \}.$

Prior Work

 [Gunderson-Rödl-Sidorenko 1999] For each d, there exists c_d such that for n sufficiently large

$$n^{-rac{d}{2^{d+1}-2}(1-o(1))}\cdot 2^n\leq b(n,d)\leq c_d\cdot n^{-rac{1}{2^d}}\cdot 2^n.$$

- What is the largest size of a B_d-free subfamily of 2^[n]?
- Let $b(n, d) = \max \{ |\mathcal{F}| : \mathcal{F} \subseteq 2^{[n]} \text{ and } \mathcal{F} \text{ is } \mathcal{B}_d \text{-free} \}.$

Prior Work

 [Gunderson-Rödl-Sidorenko 1999] For each d, there exists c_d such that for n sufficiently large

$$n^{-rac{d}{2^{d+1}-2}(1-o(1))} \cdot 2^n \leq b(n,d) \leq c_d \cdot n^{-rac{1}{2^d}} \cdot 2^n.$$

• Here, $c_d = (10d)^d (1 + o(1))$.

- ▶ What is the largest size of a B_d-free subfamily of 2^[n]?
- Let $b(n,d) = \max \{ |\mathcal{F}| : \mathcal{F} \subseteq 2^{[n]} \text{ and } \mathcal{F} \text{ is } \mathcal{B}_d\text{-free} \}.$

Prior Work

 [Gunderson-Rödl-Sidorenko 1999] For each d, there exists c_d such that for n sufficiently large

$$n^{-rac{d}{2^{d+1}-2}(1-o(1))} \cdot 2^n \leq b(n,d) \leq c_d \cdot n^{-rac{1}{2^d}} \cdot 2^n.$$

• Here,
$$c_d = (10d)^d (1 + o(1)).$$

Theorem

$$b(n,d) \leq 50 \cdot n^{-\frac{1}{2^d}} \cdot 2^n.$$

Definition

• Let
$$\alpha_0(n) = 0$$
.

Definition

• Let
$$\alpha_0(n) = 0$$
.

For
$$d \ge 1$$
, define $\alpha_d(n) = \frac{1}{2} + \sqrt{2n\alpha_{d-1}(n) + \frac{1}{4}}$.

Definition

- Let $\alpha_0(n) = 0$.
- For $d \ge 1$, define $\alpha_d(n) = \frac{1}{2} + \sqrt{2n\alpha_{d-1}(n) + \frac{1}{4}}$.

Facts

For $d \ge 1$, the bounds $(2n)^{1-\frac{2}{2^d}} \le \alpha_d(n) \le (4n)^{1-\frac{2}{2^d}}$ hold.

Definition

- Let $\alpha_0(n) = 0$.
- For $d \ge 1$, define $\alpha_d(n) = \frac{1}{2} + \sqrt{2n\alpha_{d-1}(n) + \frac{1}{4}}$.

Facts

- For $d \ge 1$, the bounds $(2n)^{1-\frac{2}{2^d}} \le \alpha_d(n) \le (4n)^{1-\frac{2}{2^d}}$ hold.
- For fixed *d*, we have $\alpha_d(n) = (1 + o(1))(2n)^{1-\frac{2}{2^d}}$.

Definition

- Let $\alpha_0(n) = 0$.
- For $d \ge 1$, define $\alpha_d(n) = \frac{1}{2} + \sqrt{2n\alpha_{d-1}(n) + \frac{1}{4}}$.

Facts

- For $d \ge 1$, the bounds $(2n)^{1-\frac{2}{2^d}} \le \alpha_d(n) \le (4n)^{1-\frac{2}{2^d}}$ hold.
- For fixed *d*, we have $\alpha_d(n) = (1 + o(1))(2n)^{1-\frac{2}{2d}}$.
- For $d \ge 1$, we have $\binom{\alpha_d(n)}{2}/n = \alpha_{d-1}(n)$.

• Given x_0, x_1, \ldots, x_d with $x_0 \ge 0$ and $x_i \ge 1$ for $i \ge 1$,

Given x₀, x₁,..., x_d with x₀ ≥ 0 and x_i ≥ 1 for i ≥ 1, the generated affine d-cube is the set of all integers obtained by adding x₀ to the sum of 0 or more members of {x₁,...,x_d}.

Given x₀, x₁,..., x_d with x₀ ≥ 0 and x_i ≥ 1 for i ≥ 1, the generated affine d-cube is the set of all integers obtained by adding x₀ to the sum of 0 or more members of {x₁,...,x_d}.

Lemma (Szemerédi 1969)

If $A \subseteq [0, n]$ and $|A| > \alpha_d(n)$, then A contains an affine d-cube.

Given x₀, x₁,..., x_d with x₀ ≥ 0 and x_i ≥ 1 for i ≥ 1, the generated affine d-cube is the set of all integers obtained by adding x₀ to the sum of 0 or more members of {x₁,...,x_d}.

Lemma (Szemerédi 1969)

If $A \subseteq [0, n]$ and $|A| > \alpha_d(n)$, then A contains an affine d-cube.

Proof.

▶ By induction on *d*; case *d* = 0 is easy. Let *d* ≥ 1 and $A \subseteq [0, n]$ with $|A| > \alpha_d(n)$.

Lemma (Szemerédi 1969) If $A \subseteq [0, n]$ and $|A| > \alpha_d(n)$, then A contains an affine d-cube.

Proof.

▶ By induction on *d*; case *d* = 0 is easy. Let *d* ≥ 1 and $A \subseteq [0, n]$ with $|A| > \alpha_d(n)$.

Lemma (Szemerédi 1969) If $A \subseteq [0, n]$ and $|A| > \alpha_d(n)$, then A contains an affine d-cube.

- ▶ By induction on *d*; case *d* = 0 is easy. Let *d* ≥ 1 and $A \subseteq [0, n]$ with $|A| > \alpha_d(n)$.
- ► For each $k \in [n]$, let $A_k = \{a \in A : a + k \in A\}$.

Lemma (Szemerédi 1969) If $A \subseteq [0, n]$ and $|A| > \alpha_d(n)$, then A contains an affine d-cube.

- ▶ By induction on *d*; case *d* = 0 is easy. Let *d* ≥ 1 and $A \subseteq [0, n]$ with $|A| > \alpha_d(n)$.
- ► For each $k \in [n]$, let $A_k = \{a \in A : a + k \in A\}$.

Lemma (Szemerédi 1969) If $A \subseteq [0, n]$ and $|A| > \alpha_d(n)$, then A contains an affine d-cube.

- ▶ By induction on *d*; case *d* = 0 is easy. Let *d* ≥ 1 and $A \subseteq [0, n]$ with $|A| > \alpha_d(n)$.
- ▶ For each $k \in [n]$, let $A_k = \{a \in A : a + k \in A\}$.

$$\blacktriangleright \sum_{k=1}^{n} |A_k| = \binom{|A|}{2}.$$

Lemma (Szemerédi 1969) If $A \subseteq [0, n]$ and $|A| > \alpha_d(n)$, then A contains an affine d-cube.

- ▶ By induction on *d*; case d = 0 is easy. Let $d \ge 1$ and $A \subseteq [0, n]$ with $|A| > \alpha_d(n)$.
- ▶ For each $k \in [n]$, let $A_k = \{a \in A : a + k \in A\}$.
- $\sum_{k=1}^{n} |A_k| = {\binom{|A|}{2}}$. Find k with $|A_k| \ge {\binom{|A|}{2}}/n > \alpha_{d-1}(n)$.

Lemma (Szemerédi 1969) If $A \subseteq [0, n]$ and $|A| > \alpha_d(n)$, then A contains an affine d-cube.

- ▶ By induction on *d*; case *d* = 0 is easy. Let *d* ≥ 1 and $A \subseteq [0, n]$ with $|A| > \alpha_d(n)$.
- ▶ For each $k \in [n]$, let $A_k = \{a \in A : a + k \in A\}$.
- $\sum_{k=1}^{n} |A_k| = {\binom{|A|}{2}}$. Find k with $|A_k| \ge {\binom{|A|}{2}}/n > \alpha_{d-1}(n)$.
- ▶ Induction: A_k has an affine cube generated by x_0, \ldots, x_{d-1} .

Lemma (Szemerédi 1969)

If $A \subseteq [0, n]$ and $|A| > \alpha_d(n)$, then A contains an affine d-cube.

- ▶ By induction on *d*; case *d* = 0 is easy. Let *d* ≥ 1 and $A \subseteq [0, n]$ with $|A| > \alpha_d(n)$.
- ▶ For each $k \in [n]$, let $A_k = \{a \in A : a + k \in A\}$.
- $\sum_{k=1}^{n} |A_k| = {\binom{|A|}{2}}$. Find k with $|A_k| \ge {\binom{|A|}{2}}/n > \alpha_{d-1}(n)$.
- Induction: A_k has an affine cube generated by x_0, \ldots, x_{d-1} .

Lemma (Szemerédi 1969)

If $A \subseteq [0, n]$ and $|A| > \alpha_d(n)$, then A contains an affine d-cube.

- ▶ By induction on *d*; case *d* = 0 is easy. Let *d* ≥ 1 and $A \subseteq [0, n]$ with $|A| > \alpha_d(n)$.
- ▶ For each $k \in [n]$, let $A_k = \{a \in A : a + k \in A\}$.
- $\sum_{k=1}^{n} |A_k| = {\binom{|A|}{2}}$. Find k with $|A_k| \ge {\binom{|A|}{2}}/n > \alpha_{d-1}(n)$.
- ▶ Induction: A_k has an affine cube generated by x_0, \ldots, x_{d-1} .
- A has an affine cube generated by x_0, \ldots, x_d with $x_d = k$.

Lemma (Szemerédi 1969)

If $A \subseteq [0, n]$ and $|A| > \alpha_d(n)$, then A contains an affine d-cube.

- ▶ By induction on *d*; case *d* = 0 is easy. Let *d* ≥ 1 and $A \subseteq [0, n]$ with $|A| > \alpha_d(n)$.
- ▶ For each $k \in [n]$, let $A_k = \{a \in A : a + k \in A\}$.
- $\sum_{k=1}^{n} |A_k| = {\binom{|A|}{2}}$. Find k with $|A_k| \ge {\binom{|A|}{2}}/n > \alpha_{d-1}(n)$.
- ▶ Induction: A_k has an affine cube generated by x_0, \ldots, x_{d-1} .
- A has an affine cube generated by x_0, \ldots, x_d with $x_d = k$.

Lemma (Szemerédi 1969)

If $A \subseteq [0, n]$ and $|A| > \alpha_d(n)$, then A contains an affine d-cube.

• Using
$$\alpha_d(n) \le (4n)^{1-\frac{2}{2^d}} < 4n^{1-\frac{2}{2^d}}$$
, we obtain:

Corollary

If $A \subseteq [0, n]$ and $|A| \ge 4n^{1-\frac{2}{2^d}}$, then A contains an affine d-cube.

The Lubell Function

Given *F* ⊆ 2^[n], let *X* be the number of times a random full chain meets *F*.

The Lubell Function

Given *F* ⊆ 2^[n], let *X* be the number of times a random full chain meets *F*.

The Lubell Function

 Given *F* ⊆ 2^[n], let *X* be the number of times a random full chain meets *F*.

$$\blacktriangleright \mathbf{E}[X] = \sum_{A \in \mathcal{F}} \frac{1}{\binom{n}{|A|}}$$

Given *F* ⊆ 2^[n], let *X* be the number of times a random full chain meets *F*.

•
$$\mathbf{E}[X] = \sum_{A \in \mathcal{F}} \frac{1}{\binom{n}{|A|}}$$

► The Lubell function of *F*, denoted *h_n*(*F*), is **E**[*X*].

•
$$\mathbf{E}[X] = \sum_{A \in \mathcal{F}} \frac{1}{\binom{n}{|A|}}$$

- ► The Lubell function of *F*, denoted h_n(*F*), is E[X].
- ► Think of h_n(F) as a measure of the size of F, with 0 ≤ h_n(F) ≤ n + 1.

• $\binom{X}{2}$ also gives useful information.

- $\binom{X}{2}$ also gives useful information.
- For each ordered pair (A, B) of distinct elements in F with A ⊆ B, let Y_{A,B} be the indicator r.v. for the full chain containing A and B.

- $\binom{X}{2}$ also gives useful information.
- For each ordered pair (A, B) of distinct elements in F with A ⊆ B, let Y_{A,B} be the indicator r.v. for the full chain containing A and B.

$$\mathsf{E}[\binom{X}{2}] = \sum_{A,B} \mathsf{E}\left[Y_{A,B}\right]$$

- $\binom{X}{2}$ also gives useful information.
- For each ordered pair (A, B) of distinct elements in F with A ⊆ B, let Y_{A,B} be the indicator r.v. for the full chain containing A and B.

$$\mathbf{E}\begin{bmatrix}\binom{X}{2}\end{bmatrix} = \sum_{A,B} \mathbf{E}\begin{bmatrix}Y_{A,B}\end{bmatrix}$$
$$= \sum_{A,B} \frac{1}{\binom{n}{|A|,|B|-|A|,n-|B|}}$$

- $\binom{X}{2}$ also gives useful information.
- For each ordered pair (A, B) of distinct elements in F with A ⊆ B, let Y_{A,B} be the indicator r.v. for the full chain containing A and B.

$$\mathbf{E}\begin{bmatrix}\binom{X}{2}\end{bmatrix} = \sum_{A,B} \mathbf{E}\begin{bmatrix}Y_{A,B}\end{bmatrix}$$
$$= \sum_{A,B} \frac{1}{\binom{n}{|A|,|B|-|A|,n-|B|}}$$
$$\vdots$$
$$= \sum_{k=1}^{n} \frac{1}{\binom{n}{k}} \sum_{S \in \binom{[n]}{k}} h_{n-k}(\mathcal{F}_{S}),$$

• $\binom{X}{2}$ also gives useful information.

E[

For each ordered pair (A, B) of distinct elements in F with A ⊊ B, let Y_{A,B} be the indicator r.v. for the full chain containing A and B.

$$\begin{aligned} \binom{X}{2} &= \sum_{A,B} \mathbf{E} \left[Y_{A,B} \right] \\ &= \sum_{A,B} \frac{1}{\binom{n}{|A|,|B|-|A|,n-|B|}} \\ &\vdots \\ &= \sum_{k=1}^{n} \frac{1}{\binom{n}{k}} \sum_{S \in \binom{[n]}{k}} h_{n-k}(\mathcal{F}_{S}), \end{aligned}$$

where \mathcal{F}_S is the set of all $A \in \mathcal{F}$ that are disjoint from S with $A \cup S \in \mathcal{F}$.

Theorem If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of \mathcal{B}_d . Corollary (Szemerédi's Cube Lemma) If $A \subseteq [0, n]$ and $|A| > \alpha_d(n)$, then A contains an affine d-cube.

Theorem If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of \mathcal{B}_d . Corollary (Szemerédi's Cube Lemma) If $A \subseteq [0, n]$ and $|A| > \alpha_d(n)$, then A contains an affine d-cube.

Proof.

• Let
$$\mathcal{F} = \bigcup_{k \in A} {[n] \choose k}$$
.

Theorem If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of \mathcal{B}_d . Corollary (Szemerédi's Cube Lemma) If $A \subseteq [0, n]$ and $|A| > \alpha_d(n)$, then A contains an affine d-cube.

Proof.

Theorem If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of \mathcal{B}_d . Corollary (Szemerédi's Cube Lemma) If $A \subseteq [0, n]$ and $|A| > \alpha_d(n)$, then A contains an affine d-cube.

Proof.

• Let
$$\mathcal{F} = \bigcup_{k \in A} {[n] \choose k}$$
.

• Note $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) = |\mathcal{A}| > \alpha_d(n)$.

▶ By the theorem: *F* contains a copy of *B_d* generated by disjoint sets *X*₀, *X*₁,..., *X_d*.

Theorem If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of \mathcal{B}_d . Corollary (Szemerédi's Cube Lemma) If $A \subseteq [0, n]$ and $|A| > \alpha_d(n)$, then A contains an affine d-cube.

Proof.

• Let
$$\mathcal{F} = \bigcup_{k \in A} {[n] \choose k}$$
.

- Note $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) = |\mathcal{A}| > \alpha_d(n)$.
- ▶ By the theorem: *F* contains a copy of *B_d* generated by disjoint sets *X*₀, *X*₁,..., *X_d*.
- ► Hence A contains an affine d-cube generated by x₀,..., x_d with x_i = |X_i|.

Theorem If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of \mathcal{B}_d . Corollary (Szemerédi's Cube Lemma) If $A \subseteq [0, n]$ and $|A| > \alpha_d(n)$, then A contains an affine d-cube.

Question

Is it true that among all B_d-free families F ⊆ 2^[n] that maximize h_n(F), at least one is the union of level sets?

Theorem If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of \mathcal{B}_d . Corollary (Szemerédi's Cube Lemma) If $A \subseteq [0, n]$ and $|A| > \alpha_d(n)$, then A contains an affine d-cube.

Question

- Is it true that among all B_d-free families F ⊆ 2^[n] that maximize h_n(F), at least one is the union of level sets?
- If so, then both extremal problems are equivalent.

Theorem If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of \mathcal{B}_d . Corollary (Szemerédi's Cube Lemma) If $A \subseteq [0, n]$ and $|A| > \alpha_d(n)$, then A contains an affine d-cube.

Question

- Is it true that among all B_d-free families F ⊆ 2^[n] that maximize h_n(F), at least one is the union of level sets?
- If so, then both extremal problems are equivalent.
- Sperner's Theorem: yes for d = 1.

Theorem If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of \mathcal{B}_d . Corollary (Szemerédi's Cube Lemma) If $A \subseteq [0, n]$ and $|A| > \alpha_d(n)$, then A contains an affine d-cube.

Question

- Is it true that among all B_d-free families F ⊆ 2^[n] that maximize h_n(F), at least one is the union of level sets?
- If so, then both extremal problems are equivalent.
- Sperner's Theorem: yes for d = 1.
- Open for $d \ge 2$.

Theorem

Theorem

Theorem

- By induction on d. Case d = 0: trivial.
- ► Let X be the number of times a random full chain meets *F*.

Theorem

- By induction on d. Case d = 0: trivial.
- ► Let *X* be the number of times a random full chain meets *F*.

•
$$\mathbf{E}[X] = h_n(\mathcal{F}) > \alpha_d(n).$$

Theorem

- By induction on d. Case d = 0: trivial.
- ► Let *X* be the number of times a random full chain meets *F*.
- $\mathbf{E}[X] = h_n(\mathcal{F}) > \alpha_d(n).$
- By convexity: $\mathbf{E}[\binom{X}{2}] \ge \binom{\mathbf{E}[X]}{2}$

Theorem

- By induction on d. Case d = 0: trivial.
- ► Let *X* be the number of times a random full chain meets *F*.
- $\mathbf{E}[X] = h_n(\mathcal{F}) > \alpha_d(n).$
- By convexity:
 - $\mathsf{E}[\binom{X}{2}] \ge \binom{\mathsf{E}[X]}{2} > \binom{\alpha_d(n)}{2}$
Theorem

If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of \mathcal{B}_d .

- By induction on d. Case d = 0: trivial.
- ► Let *X* be the number of times a random full chain meets *F*.
- $\mathbf{E}[X] = h_n(\mathcal{F}) > \alpha_d(n).$
- By convexity:

$$\mathbf{E}[\binom{X}{2}] \ge \binom{\mathbf{E}[X]}{2} > \binom{\alpha_d(n)}{2} = n\alpha_{d-1}(n)$$

Theorem

If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of \mathcal{B}_d .

► By convexity: $\mathbf{E}[\binom{X}{2}] \ge \binom{\mathbf{E}[X]}{2} > \binom{\alpha_d(n)}{2} = n\alpha_{d-1}(n)$

Theorem

If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of \mathcal{B}_d .

By convexity:
 E[^(X)₂] ≥ (^{E[X]}₂) > (^{α_d(n)}₂) = nα_{d-1}(n)
 Grouping pairs (A, B) ∈ F × F with

$$A \subsetneq B$$
 by $B - A$, with $S = B - A$

 $\mathbf{E}[\binom{X}{2}] =$

Theorem

If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of \mathcal{B}_d .

► By convexity: $\mathbf{E}[\binom{X}{2}] \ge \binom{\mathbf{E}[X]}{2} > \binom{\alpha_d(n)}{2} = n\alpha_{d-1}(n)$ ► Grouping pairs $(A, B) \in \mathcal{F} \times \mathcal{F}$ with $A \subsetneq B$ by B - A, with S = B - A: $\mathbf{E}[\binom{X}{2}] = \sum_{k=1}^{n} \frac{1}{\binom{n}{k}} \sum_{S \in \binom{[n]}{k}} h_{n-k}(\mathcal{F}_S),$

Theorem

If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of \mathcal{B}_d .

► By convexity: $\mathbf{E}[\binom{X}{2}] \ge \binom{\mathbf{E}[X]}{2} > \binom{\alpha_d(n)}{2} = n\alpha_{d-1}(n)$ ► Grouping pairs $(A, B) \in \mathcal{F} \times \mathcal{F}$ with $A \subsetneq B$ by B - A, with S = B - A: $\mathbf{E}[\binom{X}{2}] = \sum_{k=1}^{n} \frac{1}{\binom{n}{k}} \sum_{S \in \binom{[n]}{k}} h_{n-k}(\mathcal{F}_S),$

where \mathcal{F}_S is the family of all $A \in \mathcal{F}$ that are disjoint from S with $A \cup S \in \mathcal{F}$.

Theorem

If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of \mathcal{B}_d .

► By convexity: $\mathbf{E}[\binom{X}{2}] \ge \binom{\mathbf{E}[X]}{2} > \binom{\alpha_d(n)}{2} = n\alpha_{d-1}(n)$ ► Grouping pairs $(A, B) \in \mathcal{F} \times \mathcal{F}$ with $A \subsetneq B$ by B - A, with S = B - A: $\mathbf{E}[\binom{X}{2}] = \sum_{k=1}^{n} \frac{1}{\binom{n}{k}} \sum_{S \in \binom{[n]}{k}} h_{n-k}(\mathcal{F}_S),$ where \mathcal{F}_S is the family of all $A \in \mathcal{F}$ that

where \mathcal{F}_S is the family of all $A \in \mathcal{F}$ that are disjoint from S with $A \cup S \in \mathcal{F}$.

$$\blacktriangleright \sum_{k=1}^{n} \frac{1}{\binom{n}{k}} \sum_{S \in \binom{[n]}{k}} h_{n-k}(\mathcal{F}_{S}) > n\alpha_{d-1}(n)$$

Theorem

If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of \mathcal{B}_d .

$$\sum_{k=1}^{n} \frac{1}{\binom{n}{k}} \sum_{S \in \binom{[n]}{k}} h_{n-k}(\mathcal{F}_{S}) > n\alpha_{d-1}(n)$$

Theorem

If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of \mathcal{B}_d .

п

►
$$\sum_{k=1}^{n} \frac{1}{\binom{n}{k}} \sum_{S \in \binom{[n]}{k}} h_{n-k}(\mathcal{F}_{S}) > n\alpha_{d-1}(n)$$

► Find k such that
$$\frac{1}{\binom{n}{k}} \sum_{S \in \binom{[n]}{k}} h_{n-k}(\mathcal{F}_{S}) > \alpha_{d-1}(n)$$

Theorem

If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of \mathcal{B}_d .

n

Theorem

If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of \mathcal{B}_d .

n

[n]0 0 0 α

Theorem

If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of \mathcal{B}_d .

n

[n]• 0

Theorem

If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of \mathcal{B}_d .

[n]• α

Theorem

If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of \mathcal{B}_d .

[n] X_0^{\bullet} α

Theorem

If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of \mathcal{B}_d .

[n] X_0^{\bullet} 0

Theorem

If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of \mathcal{B}_d .

|n| X_0 0

$$\sum_{k=1}^{n} \frac{1}{\binom{n}{k}} \sum_{S \in \binom{[n]}{k}} h_{n-k}(\mathcal{F}_{S}) > n\alpha_{d-1}(n)$$

Find k such that
$$\frac{1}{\binom{n}{k}} \sum_{S \in \binom{[n]}{k}} h_{n-k}(\mathcal{F}_{S}) > \alpha_{d-1}(n)$$

Find $S \in \binom{[n]}{k}$ with $h_{n-k}(\mathcal{F}_{S}) > \alpha_{d-1}(n)$

▶ By induction, *F_S* contains a copy of *B_{d-1}* generated by *X*₀,..., *X_{d-1}*.

n).

► \mathcal{F} contains a copy of \mathcal{B}_d generated by X_0, \ldots, X_d with $X_d = S$.

Theorem

If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of \mathcal{B}_d .

|n|0

$$\sum_{k=1}^{n} \frac{1}{\binom{n}{k}} \sum_{S \in \binom{[n]}{k}} h_{n-k}(\mathcal{F}_S) > n\alpha_{d-1}(n)$$

Find k such that

$$\frac{1}{\binom{n}{k}} \sum_{S \in \binom{[n]}{k}} h_{n-k}(\mathcal{F}_S) > \alpha_{d-1}(n)$$

- Find $S \in {[n] \choose k}$ with $h_{n-k}(\mathcal{F}_S) > \alpha_{d-1}(n)$.
- ▶ By induction, *F_S* contains a copy of *B_{d-1}* generated by *X*₀,...,*X_{d-1}*.
- ► \mathcal{F} contains a copy of \mathcal{B}_d generated by X_0, \ldots, X_d with $X_d = S$.

Theorem If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of \mathcal{B}_d .

Theorem If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of \mathcal{B}_d . Corollary If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) \ge 4n^{1-\frac{2}{2^d}}$, then \mathcal{F} contains a copy of \mathcal{B}_d .

Theorem If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of \mathcal{B}_d . Corollary

If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) \ge 4n^{1-\frac{2}{2^d}}$, then \mathcal{F} contains a copy of \mathcal{B}_d .

▶ Partitioning 2^[n] into consecutive segments of √n levels and applying an averaging argument yields:

Theorem If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) > \alpha_d(n)$, then \mathcal{F} contains a copy of \mathcal{B}_d . Corollary

If $\mathcal{F} \subseteq 2^{[n]}$ and $h_n(\mathcal{F}) \ge 4n^{1-\frac{2}{2^d}}$, then \mathcal{F} contains a copy of \mathcal{B}_d .

▶ Partitioning 2^[n] into consecutive segments of √n levels and applying an averaging argument yields:

Theorem

If $\mathcal{F} \subseteq 2^{[n]}$ and $|\mathcal{F}| \ge 50n^{-1/2^d} \cdot 2^n$, then \mathcal{F} contains a copy of \mathcal{B}_d .

► How many parts are needed to partition 2^[n] into B_d-free families?

- ► How many parts are needed to partition 2^[n] into B_d-free families?
- Let r(n, d) be the minimum number of parts needed.

► How many parts are needed to partition 2^[n] into B_d-free families?

• Let r(n, d) be the minimum number of parts needed. Prior Work

• Clearly, r(n, 1) = n + 1.

► How many parts are needed to partition 2^[n] into B_d-free families?

► Let r(n, d) be the minimum number of parts needed. Prior Work

- Clearly, r(n, 1) = n + 1.
- ▶ [Gunderson-Rödl-Sidorenko 1999] For *n* sufficiently large

$$(1-o(1))\frac{3}{4}\cdot n^{1/2} \leq r(n,2) \leq (1+o(1))\cdot n^{1/2}.$$

► How many parts are needed to partition 2^[n] into B_d-free families?

• Let r(n, d) be the minimum number of parts needed. Prior Work

▶ [Gunderson-Rödl-Sidorenko 1999] For d > 2, there exists c_d such that for n sufficiently large

$$c_d \cdot n^{\frac{1}{2^d}} \leq r(n,d) \leq n^{\frac{d}{2^d-1}(1+o(1))}$$

- ► How many parts are needed to partition 2^[n] into B_d-free families?
- ► Let r(n, d) be the minimum number of parts needed. Prior Work
 - ▶ [Gunderson-Rödl-Sidorenko 1999] For d > 2, there exists c_d such that for n sufficiently large

$$c_d \cdot n^{\frac{1}{2^d}} \leq r(n,d) \leq n^{\frac{d}{2^d-1}(1+o(1))}.$$

• Here, $c_d = (10d)^{-d}(1+o(1))$.

- ► How many parts are needed to partition 2^[n] into B_d-free families?
- ► Let r(n, d) be the minimum number of parts needed. Prior Work
 - ▶ [Gunderson-Rödl-Sidorenko 1999] For d > 2, there exists c_d such that for n sufficiently large

$$c_d \cdot n^{\frac{1}{2^d}} \leq r(n,d) \leq n^{\frac{d}{2^d-1}(1+o(1))}.$$

• Here,
$$c_d = (10d)^{-d}(1 + o(1))$$
.

Theorem

$$r(n,d)\geq \frac{1}{4}\cdot n^{\frac{2}{2^d}}$$

- ► How many parts are needed to partition 2^[n] into B_d-free families?
- ► Let r(n, d) be the minimum number of parts needed. Prior Work
 - ▶ [Gunderson-Rödl-Sidorenko 1999] For d > 2, there exists c_d such that for n sufficiently large

$$c_d \cdot n^{\frac{1}{2^d}} \leq r(n,d) \leq n^{\frac{d}{2^d-1}(1+o(1))}.$$

• Here,
$$c_d = (10d)^{-d}(1 + o(1))$$
.

Theorem

$$r(n,d)\geq \frac{1}{4}\cdot n^{\frac{2}{2^d}}$$

Thank You.